Распределение мелкой донорной примеси в пластине *p*-CdTe при ее отжиге в парах Cd

© В.Н. Бабенцов, З.К. Власенко, А.И. Власенко, А.В. Любченко

Институт физики полупроводников Национальной академии наук Украины, 252650 Киев, Украина

(Получена 4 апреля 1996 г. Принята к печати 1 июля 1996 г.)

Проведены экспериментальные исследования и численное моделирование процесса двустороннего легирования пластины *p*-CdTe мелкими донорами при ее отжиге в парах кадмия. Установлен ряд особенностей этого процесса — корреляция в полосах низкотемпературной фотолюминесценции между разгоранием линии экситона, связанного на доноре, и гашением акцепторной линии, присущих рекомбинации на примеси I группы таблицы Д.И.Менделеева, находящейся в междоузлиях и узлах Cd соответственно; существенное влияние диффузии на профиль распределения доноров. Полученные результаты позволяют оптимизировать процесс отжига.

Теллурид кадмия широко используется в инфракрасной [1], радиационной [2] фотоэлектронике, в оптоэлектронике [3], лазерной технике [4] и т. д. Для многочисленных применений требуется материал с составом, близким к стехиометрическому, с высокой точностью компенсации, контролируемого уровня легирования, отсутствием включений второй фазы, малой концентрацией остаточных электрически активных примесей. В качестве последних обычно выступают элементы І группы (Li, Na, Cu, Ag), являющиеся в узлах кадмия акцепторами, в междоузлиях — донорами [5,6]. В то же время вследствие ретроградной растворимости теллура даже в относительно стехиометричном материале преобладают вакансии кадмия; соотношение концентраций примесей и вакансий, как правило, определяет проводимость кристаллов. Послеростовым отжигом пластины *p*-CdTe в парах Cd получают материал n-типа [7,8], однако вопрос о распределении донорной примеси по толщине пластины требует дополнительного излучения. это связано с необходимостью учета процессов геттерирования точечных дефектов поверхностями, макродефектами решетки [9], рассасывания скоплений и др.

В данной работе экспериментально исследованы профили распределения мелких доноров по толщине пластины *p*-CdTe при ее отжиге в насыщенных парах кадмия и проведено численное моделирование этого процесса с учетом двусторонней диффузии Cd и редиффузии мелких доноров из пластины.

Плоскопараллельные пластины p-CdTe, ориентированные большими поверхностями вдоль плоскости (111), после удаления нарушенного слоя отжигались в вакуумированной ампуле, содержащей навеску Cd при 600°C в течение 1, 2, 3, 4, 28 ч.

Профили распределения доноров измеряли на свежих сколах методом низкотемпературной фотолюминесценции (НФЛ) (возбуждение зондом Не–Ne-лазера) по интенсивности излучения экситонов, связанных на донорах [10–12].

Образование донорных дефектов при отжиге в парах Сd пластины *p*-CdTe может идти в основном за счет следующих реакций (без учета термической ионизации дефектов, их зарядовых состояний и комплексообразования):

$$\operatorname{Cd}_c \leftrightarrow \operatorname{Cd}_i^*,$$
 (1a)

$$Te_{Te} \leftrightarrow Te_i + V_{Te}^*,$$
 (1b)

$$\operatorname{Cd}_{c} + V_{\operatorname{Cd}} \leftrightarrow \operatorname{Cd}_{\operatorname{Cd}} \leftrightarrow V_{\operatorname{Cd}} + \operatorname{Cd}_{i}^{*},$$
 (1c)

$$\mathrm{Cd}_c \leftrightarrow \mathrm{Cd}_{\mathrm{Cd}} + V_{\mathrm{Te}}^*,$$
 (1d)

$$\operatorname{Cd}_i + M_{\operatorname{Cd}}^I \leftrightarrow \operatorname{Cd}_{\operatorname{Cd}} + M_i^{I*},$$
 (1e)

$$M_c^I \leftrightarrow M_i^{I*},$$
 (1f)

где соответственно Cd_{Cd} , Cd_i , Cd_c обозначают атомы кадмия, M_{Cd}^I , M_i^I , M_c^I — атомы примеси металлов I группы в узлах Cd, междоузлиях, скоплениях (на поверхностях); V_{Cd} , V_{Te} — вакансии Cd и Te; знаком * обозначено донорное состояние дефектов.

Диффундирующие в объем при отжиге в парах Cd атомы Cd занимают свои места в узлах A^{II} решетки. При избытке атомов Cd и отсутствии свободных и слабо связанных вакансий они будут находиться в междоузлиях и проявляться как доноры (1а), либо достраивать подрешетку Cd (в первую очередь в областях структурных макродефектов), образующиеся при этом вакансии Te (1d) также обладают донорными свойствами.

На рис. 1 приведено спектральное распределение интенсивности НФЛ из точек скола кристалла, расположенных на одном и том же расстоянии от его поверхностей, измеренное до и после отжига длительностью t = 3 ч. Здесь же указаны линии НФЛ экситонов, связанных на мелких донорах (I_2) и акцепторах (I_1). Сопоставление с литературными данными по спектрам НФЛ различных типов дефектов в СdTe [6,8,9,11] показывает, что в процессах образования мелких доноров наиболее интенсивно идет реакция (1е), замещение диффундирующими от поверхности атомами Cd атомов M^I , находящихся в узлах A^{II} (в первую очередь слабо связанных, например Li [13]), где они проявляются как акцепторы, и вытеснение их в междоузлия, где они приобретают донорные свойства.

Рис. 1. Спектр фотолюминесценции СdTe при 4.2 К на глубине 100 мкм; I — исходный, 2 — после отжига 3 ч. На вставке — зависимости интенсивностей линий экситонов, связанных на акцепторе (I_1) и доноре (I_2) , на глубине 100 мкм от поверхности образца от времени отжига.

О доминировании этого процесса свидетельствует явная корреляция между разгоранием донорной линии I_2 и гашением акцепторной линии I_1 (см. вставку на рис. 1), связанных с пропорциональными изменениями концентрации атомов M^I в междоузлиях и узлах соответственно при увеличении времени отжигов (t). При увеличении t наблюдается насыщение кривой I_2 для доноров M_i^{I*} , что может быть связано с тем, что концентрация остаточной примеси M^I имеет конечное значение. Следует отметить, что рост электронной составляющей в проводимости может сохраниться за счет увеличения концентрации доноров — Cd_i^* , V_{Te}^* — (1a), (1d).

При достаточно больших длительностях отжига следовало бы ожидать равномерного распределения атомов M_i^* по толщине пластины. Однако, несмотря на реализацию режима с постоянным в процессе отжига давлением паров Cd над пластиной CdTe, профиль распределения остаточной донорной примеси по толщине пластины остается сложным и не выравнивается даже при больших t. Об этом свидетельствуют представленные на рис. 2 экспериментально измеренные профили распределения по толщине пластины p-CdTe интенсивности линии I_2 для различных времен t.

Это связано с идущими параллельно диффузии процессами испарения с поверхностней пластины атомов примеси (в первую очередь с малыми атомными радиусами) и их гетеродиффузии из объема к поверхностям. Определенное при $t \leq 4$ ч значение коэффициента самодиффузии CdTe составило $D_1 = 2.6 \cdot 10^{-8}$ см²/с. Значение коэффициента гетеродиффузии, определенное для времени отжига T = 28 ч составило $D_2 = 1.16 \cdot 10^{-9}$ см²/с.

Рис. 2. Экспериментально полученные профили распределения интенсивности линии экситона, связанного на доноре (W) по толщине пластины *p*-CdTe после отжига при 600 °C в течение 1, 4 и 28 ч (I, 3, 5), и численный расчет распределения концентрации доноров N(x, t) для 1, 4 и 28 ч (штриховые 2, 4, 6).

Рис. 3. Численное моделирование распределения концентрации примесных доноров по толщине пластины *p*-CdTe (a = 800 мкm) с учетом редиффузии при отжиге при 600 °C в течение 40 ч.

Физика и техника полупроводников, 1997, том 31, № 5

Математическая модель, описывающая распределение по глубине пластины мелких доноров при ее отжиге в парах Cd за счет вытеснения остаточной примеси M^{I} из узлов Cd в междоузлия, может быть задана двумя диффузионными уравнениями для самодиффузии Cd в пластину и встречной гетеродиффузии примеси с соответствующими начальными и граничными условиями.

Расчет результирующих профилей распределения концентрации доноров M_i^{I*} приведен на рис. 2 (штриховые линии). Удовлетворительное совпадение экспериментальных данных с расчетом для разных *t* может свидетельствовать о корректности выбранных физической и математической моделей.

Используя полученные значения D_1 , D_2 , можно рассчитать процесс долговременного отжига пластины *p*-CdTe. Результаты численного моделирования с учетом двусторонней диффузии атомов Cd и встречной гетеродиффузии атомов примеси к поверхностям представлены на рис. 3 для времени отжига до 40 ч. Результаты моделирования показывают, что при длительном отжиге в парах Cd приповерхностные области существенно обедняются мелкой донорной примесью за счет испарения во внешний объем, т.е. происходит очистка материала.

Список литературы

- [1] R. Bean, K. Zanio, J. Ziegler, J. Vac. Sci. Technol., A7, 343 (1989).
- [2] M.R. Squilante, G. Entine, E. Frederic, L. Cirignano. Instr. and Method in Phys. Research. A, 283, 323 (1989).
- [3] A. Partovi, J. Millerd, E. Garmire, M. Ziari, W. Steier, S.B. Trivedi, M.B. Klein. Appl. Phys. Lett., 57, 846 (1990).
- [4] W.J. Kim, M.J. Park, S.U. Kim, T.S. Lee, J.M. Kim, W.J. Song, S.H. Suh. J. Cryst. Growth, **104**, 677 (1990).
- [5] P. Gheuvart, U.E. Hanani, D. Schneider, R. Tribolet. J. Cryst. Growth, 101, 270 (1990).
- [6] E. Molva, J.P. Chamonal, J.L. Pautrat. Phys. St. Col. B, 109, 635 (1982).
- [7] S. Seto, A. Tanaka, Y. Masa, S. Dairaku, M. Kawashima, Appl. Phys. Lett., 53, 1524 (1988).
- [8] Н.В. Агринская, В.В. Шашкова. ФТП, 22, 1248 (1988).
- [9] Е.С. Никонюк, В.Л. Шляховый, З.И. Захарук, М.А. Ковалец, Н.И. Кучма. Неорг. матер., 31, 185 (1995).
- [10] Н.В. Агринская, Н.Н. Зиновьев, О.А. Матвеев, И.Д. Ярошецкий. ФТП, 1, 172 (1980).
- [11] В.Н. Бабенцов, Л.В. Рашковецкий, Е.А. Сальков, Н.И. Тарбаев. ФТП, 26, 1088 (1992).
- [12] V.N. Babentsov, A.I. Vlasenko, N.I. Tarbaev. Int. Workshop on "Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics", ed. by S.V.Svechnikov, M.Ya.Valakh. Proc. SPIE, 2113, 104 (1993).
- [13] В.В. Емцев, Т.В. Машовец. Примеси и точечные дефекты в полупроводниках (М., Радио и связь, 1981).

Редактор В.В. Чалдышев

Distribution of shallow donor dopant in a *p*-CdTe plate under its annealing in Cd vapour

V.N. Babentsov, Z.K. Vlasenko, A.L. Vlasenko, A.V. Liubchenko

Institute of Semiconductor Physics, National Academy of Sciences, 252650 Kiev, the Ukraine

Abstract The process of the two-side doping of a p-CdTe plate with shallow donors when it was annealed in Cd vapour was studied experimentally and modelled theoretically. Different peculiarities of this process were established: a correlation between the increase in the intensity of donor-bound-exciton line and the decrease in the acceptor's one that are inherent in recombination on the group I impurity situated in interstitial positions and in Cd sites, respectively; the significant influence of rediffusion on the donor distrubution profile. The results obtained permit to suggest optimal conditions for the annealing process, as well.

Fax: (044)-2658842(A.I.Vlasenko) E-mail: mickle@semicond.kiev.ua(A.I.Vlasenko)