Анизотропия угла фарадеевского вращения в Fe-содержащем полумагнитном полупроводнике

© С.В. Мельничук, О.С. Мельничук, А.И. Савчук, Д.Н. Трифоненко

Черновицкий государственный университет им. Ю. Федьковича, 274012 Черновцы, Украина

(Получена 22 марта 1996 г. Принята к печати 13 июня 1996 г.)

Теоретически и экспериментально исследуются магнитополевая и температурная зависимости угла фарадеевского вращения в кубическом кристалле $Cd_{1-x}Fe_xTe$. Показано, что одновременный учет спинорбитального и зеемановского взаимодействий без использования теории возмущений позволяет в едином подходе объяснить анизотропный характер указанных зависимостей в сильных магнитных полях.

Полумагнитные полупроводники (ПМП), содержащие магнитную компоненту Fe, характеризуются рядом отличительных особенностей. Одна из них заключается в проявлении анизотропного характера намагниченности, что становится особенно существенным в сильных магнитных полях при температуре жидкого гелия. В свою очередь, как показано в [1], это приводит к анизотропии эффекта Фарадея в кубическом кристалле $Cd_{1-x}Fe_x$ Te. Для объяснения анизотропии намагниченности данного материала в сильных магнитных полях существуют различные подходы [2,3].

В данной работе проведены теоретические и экспериментальные исследования эффекта Фарадея в $Cd_{1-x}Fe_x$ Те. Измерения угла фарадеевского вращения проводились на образцах с концентрацией Fe x = 0.03, предварительно ориентированных вдоль кристаллографических осей [100] и [111] при температурах $4.2 \div 100$ К. В сильных магнитных полях до 200 кГс наблюдалась анизотропия температурной зависимости постоянной Верде, составляющая ~20%.

Монокристаллы $Cd_{1-x}Fe_xTe$ ($x \leq 0.05$) были выращены видоизмененным методом Бриджмена и методом горизонтально направленной кристаллизации. Состав твердых растворов задавался загрузкой исходных компонент и контролировался с помощью методов атомноабсорбционного и микрозондового анализа. Дополнительный контроль за составом используемых образцов осуществлялся путем наблюдения экситонной структуры в спектре отражения кристаллов при 4.2 К. Образцы для магнитооптических исследований представляли собой вырезанные в плоскостях (100) и (111) пластинки толщиной $d = 0.2 \div 3.0$ мм.

Измерения угла фарадеевского вращения θ_F выполнялись с использованием сильного магнитного поля с максимальной напряженностью до 200 кЭ, которое создавалось импульсным магнитом, представляющим собой медный соленоид с внутренним диаметром 6 мм и батарею конденсаторов с общей емкостью C = 2400 мкФ и рабочим напряжением до 5 кВ. Исследуемый образец монтировался в центре соленоида вместе с пробной катушкой и Ge-датчиком для контроля за напряженностью поля H и температурой соответственно. Использование гелиевого оптического криостата и терморегулируемой

системы УТРЕКС позволило проводить измерения в интервале температур 5 ÷ 295 К.

Результаты измерений магнитополевой зависимости угла фарадеевского вращения для различных направлений магнитного поля представлены на рис. 1. Температурная зависимость постоянной Верде приведена на рис. 2. Установлено, что анизотропия угла θ_F и постоянной Верде V при низких температурах и полях ~200 кГс составляет примерно 20%.

При теоретическом рассмотрении вопроса исходим из того, что основным состоянием изолированного иона Fe²⁺, который имеет конфигурацию $3d^6$, является терм ⁵D. В кристаллическом поле симметрии T_d терм расщепляется на орбитальный дублет ⁵E и орбитальный триплет ⁵T₂. В присутствии внешнего магнитного поля с учетом спин-орбитального взаимодействия гамильтониан иона Fe²⁺

$$H = H_0 + H_{CF} + \lambda \mathbf{LS} + \mu_B \mathbf{B} (\mathbf{L} + 2\mathbf{S}),$$

где H_0 — гамильтониан изолированного атома, H_{CF} учитывает кристаллическое поле, λ — коэффициент спинорбитального взаимодействия. В приближении эквивалентных операторов H_{CF} [4]

$$H_{CF} = A \left[\frac{1}{8} (L_{+}^{2} + L_{-}^{2})^{2} + \frac{3}{2} L_{z}^{4} - 6L_{z}^{2} - \frac{12}{5} \right],$$

$$L_{\pm} = L_{x} \pm iL_{y},$$
(2)

A — константа, характеризующая взаимодействие примесного иона Fe с кристаллическим окружением. Базисные функции орбитальных термов ⁵*E* и ⁵*T*₂ имеют вид [4]

⁵E:
$$u_1 = |0\rangle,$$

 $u_2 = (1/\sqrt{2})(|2\rangle + |-2\rangle);$
⁵T₂: $v_1 = |-1\rangle,$
 $v_2 = (1/\sqrt{2})(|2\rangle - |-2\rangle),$
 $v_3 = -|1\rangle.$ (3)

В отсутствие внешнего магнитного поля спин-орбитальное взаимодействие приводит к расщеплению орбитального дублета ⁵*E* во втором порядке теории возмущений на уровни Γ_1 , Γ_4 , Γ_3 , Γ_5 , Γ_2 , энергетическое расстояние между которыми $6\lambda^2/\Delta$ (для Fe

Рис. 1. Зависимость угла фарадеевского вращения от магнитного поля в $Cd_{1-x}Fe_xTe(x = 0.03)$ при температуре T = 5 K, энергии фотонов E = 1.459 эВ для различной ориентации **В** относительно кристаллографических осей. 2, 4 — результаты эксперимента для ориентаций [100] и [111] соответственно; 1, 3 — результаты расчета для тех же ориентаций.

 $\Delta = 6A = 2500 \,\mathrm{cm^{-1}}$ и $\lambda = -100 \,\mathrm{cm^{-1}})$ составляет ~24 см⁻¹. В сильных магнитных полях $B \simeq 150 \,\mathrm{kFc}$ $\mu_B B \simeq 10 \,\mathrm{cm^{-1}}$. Поскольку приведенные энергетические расстояния имеют один и тот же порядок величины, это приводит к необходимости одновременного учета спинорбитального и зеемановского взаимодействий.

В базисе (3) гамильтониан (1) будет иметь вид

$$H = \begin{bmatrix} E_0({}^{5}E) + 2\mu_B B\mathbf{n} \mathbf{S} & (\lambda \mathbf{S} + \mu_B B\mathbf{n}) \mathbf{U} \\ (\lambda \mathbf{S} + \mu_B B\mathbf{n}) \mathbf{U}^+ & E_0({}^{5}T_2) + 2\mu_B B\mathbf{n} \mathbf{S} - (\lambda \mathbf{S} + \mu_B B\mathbf{n}) \mathbf{I} \end{bmatrix},$$
(4)

где $E_0({}^5E)$ и $E_0({}^5T_2)$ — собственные значения H_{CF} $(E_0({}^5T_2) - E_0({}^5E) = \Delta)$, **n** — единичный вектор, задающий направление магнитного поля,

$$\mathbf{U}_{vk} = \langle u_v \mathbf{L} v_k \rangle, \quad \mathbf{I}_{kk'} = - \langle v_k \mathbf{L} v_{k'} \rangle. \tag{5}$$

Подставляя явный вид матричных элементов (5) в базисе (3) и используя спиновые функции ($M_S = -2, -1, 0, 1, 2$), получим матрицу гамильтониана (4), размерность которой 25 × 25. Такой подход не использует теорию возмущений и позволяет учесть перемешивание термов ⁵*E* и ⁵*T*₂. На рис. 3 приведена магнитополевая зависимость спин-орбитальных термов, которые получены из орбитального дублета ⁵*E*.

Рис. 2. Температурная зависимость константы Верде V в $Cd_{1-x}Fe_xTe$ (x = 0.03) в магнитном поле B = 135 кГс, при энергии фотонов E = 1.459 эВ для различной ориентации **В** относительно кристаллографических осей. 2, 4 — результаты эксперимента для ориентаций [100] и [111] соответственно; *I*, 3 — результаты расчета для тех же ориентаций.

Расчет угла фарадеевского вращения производим согласно [5]:

$$\theta_F = \frac{F_0^{1/2} d}{2\hbar c} \frac{E^2}{(E_0^2 - E^2)^{3/2}} \frac{(J_h - J_e)}{g\mu_B} M.$$
(6)

Здесь J_e , J_h — интегралы обменного взаимодействия электронов и дырок с моментами ионов Fe; E_0 — энергия экситонного перехода: E — энергия фотонов; F_0 — постоянная, в которую входит сила осциллятора экситонного перехода; g — g-фактор иона Fe²⁺, M — намагниченность единицы объема,

$$M = xk_B T \frac{\partial}{\partial B} \ln Z, \tag{7}$$

x — концентрация ионов Fe²⁺, Z — статистическая сумма, которая находится с помощью полученных в магнитном поле энергетических спектров (рис. 3).

Результаты расчета магнитополевой и температурной зависимостей угла фарадеевского вращения сравниваются с экспериментальными данными на рис. 1 и 2. Как видно из приведенных зависимостей, имеет место удовлетворительное согласие экспериментальных и теоретических результатов. Анизотропия фарадеевского вращения связана с особенностями поведения спин-орбитальных уровней в сильных магнитных полях (рис. 3). Нижний

Рис. 3. Магнитополевая зависимость спин-орбитальных уровней, происходящих от орбитального терма *E* для **B** \parallel [100] (*a*) и **B** \parallel [111] (*b*).

уровень Γ_1 является слабо анизотропным, величина расщепления последующего уровня Γ_4 существенно различна для ориентаций поля **В** || [100] и **В** || [111], уровень Γ_3 при направлении поля **В** || [111] остается двукратно вырожденным, в то время как в поле **В** || [100] имеет место заметное его расщепление.

Отметим, что в работах [4,6,7] уже использовались различные варианты теории возмущений с учетом или без учета перемешивания различных орбитальных уровней для объяснения анизотропии намагниченности. Однако энергетический спектр, полученный, например, в [4], не позволяет с единых позиций объяснить указанные особенности. Таким образом, одновременный учет спин-орбитального и зеемановского взаимодействий является оправданным, покольку позволяет в едином подходе описать как анизотропию угла фарадеевского вращения, так и особенности низкзотемпературной зависимости постоянной Верде.

Список литературы

- A.I. Savchuk, O.R. Klichuk, P.I. Nikitin. Japan. J. Appl. Phys., 32, 393 (1993).
- [2] C. Testelin, A. Mauger, C. Rigaux, M. Guillot, A. Mycielski. Sol. St. Commun., 71, 923 (1989).
- [3] S. Rodrigues, M. Villeret, E. Kartheuser. Phys. Scripta, 39, 131 (1991).
- [4] M. Villeret, S. Rodrigues, E. Kartheuser. Phys. Rev. B, 41, 10028 (1990).
- [5] П.И. Никитин, А.И. Савчук. УФН, 160, вып. 11, 167 (1990).
- [6] M. Villeret, S. Rodrigues, E. Kartheuser. Phys. Rev. B, 43, 3443 (1991).
- [7] C. Testelin, C. Rigaux, A. Mauger, A. Mycielski, M. Guillot Phys. Rev. B, 46, 2193 (1992).

Редактор Л.В. Шаронова

Anisotropic Faraday rotation angle for Fe-based diluted magnetic semiconductor

S.V. Melnychuk, O.S. Melnychuk, A.I. Savchuk, D.N. Tryfonenko

State University, 274012 Chernivtsi, Ukraine

Abstract The Faraday rotation angle in the cubic crystal $Cd_{1-x}Fe_xTe$ as a function of magnetic field and temperature is investigated both theoretically and experimentally. It has been shown that simultaneous consideration of the spin-orbital and the Zeeman interactions make it possible to explain the anisotropy of the functions in question in high magnetic fields.

E-mail: gorley@chsu.chernovtsy.ua