## Исследование люминесценции диселенида меди-алюминия

© В.А. Савчук, Б.В. Корзун, Н.А. Соболев, Л.А. Маковецкая

Институт физики твердого тела и полупровдников Академии наук Белоруссии, 220072 Минск, Белоруссия

(Получена 1 декабря 1995 г. Принята к печати 22 мая 1996 г.)

Приведены результаты комплексного исследования люминесцентных свойств монокристаллов диселенида меди-алюминия CuAlSe<sub>2</sub>. Обнаружено, что спектр люминесценции нелегированных монокристаллов соединения гомогенного состава имеет сложную структуру. Путем отжига в различных атмосферах осуществлена модификация люминесцентных свойств. Анализируется природа излучательных переходов в данном полупроводнике.

Тройные полупроводниковые соединения класса I-II-VI<sub>2</sub>, кристаллизующиеся в структуре халькопирита, представляют огромный интерес с точки зрения создания преспективных устройств передачи и обработки информации, солнечной энергетики, оптоэлектроники. Диселенид меди-алюминия CuAlSe<sub>2</sub>, на основе оптической активности которого уже реализованы управляемый светом узкополосный оптический фильтр [1] и устройство управления светом в пикосекундном диапазоне [2], обладает интенсивной люминесценцией в видимой области спектра [3] и является достаточно широкозонным материалом (ширина запрещенной зоны  $E_g = 2.67$  эВ при комнатной температуре [4]) для создания светоизлучающих структур в сине-зеленой области спектра. Однако в силу технологических трудностей получения высококачественных, оптически однородных монокристаллов данные по оптическим свойствам соединения в литературе представлены весьма фрагментарно. В настоящей работе приводятся результаты комплексного исследования катодо- и фотолюминесценции CuAlSe<sub>2</sub>.

Исследуемые монокристаллы были выращены методом химических транспортных реакций (ХТР) с использованием иода в качестве транспортера из элементарных меди, алюминия и селена, взятых в соотношениях 1.1:0.9:1.9, поскольку область гомогенности соединения CuAlSe<sub>2</sub> смещена в сторону состава Cu<sub>2</sub>Se квазибинарного разреза Cu<sub>2</sub>Se-Al<sub>2</sub>Se<sub>3</sub> и соответствует составу Cu<sub>1.1</sub>Al<sub>0.9</sub>Se<sub>1.9</sub> [5]. Рентгенофазовый анализ показал, что кристаллическая структура образцов соответстует решетке халькопирита с параметрами a = 5.597 Å, c = 10.98 Å, c/a = 1.96. Пластинчатые образцы желтого цвета размером  $5 \times 5 \times 1 \,\mathrm{mm}^3$  подвергали отжигу в различных атмосферах (Zn, Cd, Cd + Al) при температурах 873 ÷ 923 К в течение 15 ÷ 20 ч. Отжиг в вакууме осуществлялся при температурах 773 ÷ 973 К в течение 12 ÷ 24 ч. Навески легирующих компонентов подбирали из расчета создания давления насыщеного пара только на начальной стадии процесса, что предотвращает возможность образования на их основе вторичных фаз типа II-VI. Все образцы, как исходные, так и подвергнутые термообработке, имели проводимость *p*-типа. Спектры катодолюминесценции

(КЛ) регистрировались при температуре образцов T = 77 К. Люминесценция возбуждалась электронным пучком с энергией 35 кэВ и максимальным уровнем возбуждения 15 Вт/мм<sup>2</sup>. Для предотвращения локального разогрева электронным пучком образцы погружались в индий с открытой для исследования одной гранью, излучающая поверхность имела площадь 0.5 × 0.1 мм<sup>2</sup>. Уменьшение плотности мощности возбуждения L катодолюминесценции достигалось расфокусировкой электронного пучка, соотношение максимальной и минимальной плотностей мощности возбуждения  $L_{\rm max}/L_{\rm min}$  составляло 10<sup>3</sup>. Спектральное разрешение не превышало ±0.2 нм. Люминесценция была однородной во всем объеме легированных образцов. Стационарная фотолюминесценция (ФЛ) возбуждалась при T = 4.2 К вдоль нормали к наиболее развитой и совершенной естественной грани (112) образца излучением аргонового лазера (энергия фотонов E<sub>ex</sub> = 2.54 эВ) либо ультрафиолетовой ксеноновой лампой высокого давления в сочетании с фильтром УФС-2 с максимумом пропускания на 330 нм, анализировалась решеточным монохроматором и регистрировалась охлаждаемым фотоэлектронным умножителем с фотокатодом типа С-1. Спектральное разрешение составляло 0.25÷1.0 эВ. Уменьшение плотности мощности возбуждения L осуществляли с помощью нейтральных светофильтров, так что  $L_{\rm max}/L_{\rm min} = 2 \cdot 10^3$ .

Типичный спектр катодолюминесценции неотожженных монокристаллов диселенида меди–алюминия гомогенного состава при T = 77 К представляет собой широкую оранжевую полосу A с полушириной  $\Delta E = 0.35$  эВ и максимумом на 1.94 эВ (рис. 1, кривая 1). На высокоэнергетическом крыле полосы A присутствует полоса  $B_1$  с максимумом 2.07 эВ. Со снижением уровня возбуждения катодолюминесценции происходит уширение полосы A, уменьшение ее интенсивности и разделение на две полосы с максимумами 1.91 и 1.96 эВ (рис. 1, вставка). Положение полосы  $B_1$  при этом не изменяется.

Отжиг монокристаллов в присутствии элементов II группы Периодической системы Zn, Cd или Cd + Al приводит к существенной трансформации спектра. Доминирующей в спектре становится полоса



Рис. 1. Спектры катодолюминесценции монокристаллов  $Cu_{1.1}Al_{0.9}Se_{1.9}$ , непосредственно после выращивания (1) и отожженных в присутствии цинка (2), кадмия (3), кадмия с алюминием (4) и в вакууме (5). T = 77 К. Спектральное положение максимумов, эВ: 1 - 1.94 (A), 2.07 (B<sub>1</sub>); 2 - 1.94 (A), 2.58 (C); 3 - 1.94 (A), 2.445 (C); 4 - 2.34 (C);  $5 - 1.65 \div 1.75$  (A). На вставке — зависимость структуры полосы A от плотности мощности возбуждения.

С (рис. 1, кривые 2-4), положение максимума которой определяется видом лигатуры, а интенсивность оранжевой полосы A уменьшается в  $10^2 \div 10^4$  раз, либо вообще она не регистрируется (для Cd + Al). При этом цвет видимого люминесцентного свечения изменяется от желтого для Cd + Al до зеленого для Cd и голубого для Zn. Значительно ослабляет интенсивность КЛ термообработка кристаллов соединения в вакууме, в результате которой в спектре регистрируется размытая широкая ( $\Delta E \simeq 0.5$  эВ) красная полоса, крылья которой перекрывают весь видимый диапазон, а интенсивность уменьшается по сравнению с нелегированными образцами в  $\sim 10^3$  раз (рис. 1, кривая 5). Положение максимума полосы зависит от условий термообработки: увеличение рабочего объема ампулы, в которой производится отжиг, температуры и длительности отжига смещает максимум в область низких энергий вплоть до полного гашения люминесценции.

На рис. 2 представлены спектры фотолюминесценции монокристаллов диселенида меди-алюминия гомогенного состава при температуре 4.2 К. Как видно из рисунка, на положение основной полосы A влияет величина энергии возбуждающих фотонов  $E_{\rm ex}$ : при увеличении  $E_{\rm ex}$  максимум смещается в высокоэнергетическую область спектра (рис. 2, кривые 1 и 2). Положение максимума также зависит от плотности мощности возбуждения ФЛ. В спектрах ФЛ образцов, отожженных в присутствии цинка, при возбуждении от ксеноновой лампы наблюдаются две полосы — A (1.96 эВ) и C (2.53 эВ) с соотношением интенсивностей  $I_A: I_C = 1:2$ .

Анализ представленных на рисунках спектров указывает на сохранение механизмов рекомбинации в соединении при различных способах возбуждения люминесценции, так как спектральный состав излучения при этом не претерпевает существенных из-



Рис. 2. Спектральные зависимости фотолюминесценции (PL) монокристаллов Cu<sub>1.1</sub>Al<sub>0.9</sub>Se<sub>1.9</sub> — нелегированных (1, 2), отожженных в присутствии цинка (3, 4) в том числе при уменьшении плотности мощности возбуждения (4). T = 4.2 К. Энергия возбуждения  $E_{\rm ex}$ , эВ: 1 - 2.54, 2-4 - 3.76. Спектральное положение максимумов, эВ: 1 - 1.74 (A), 1.24 (D); 2 - 1.81 (A), 1.97 (B<sub>2</sub>); 3 - 1.96 (A), 2.53 (C); 4 - 1.76 (A), 1.97 (B<sub>2</sub>). На вставке — энергетическая диаграмма переходов при энергиях возбуждающих фотонов  $E_{\rm ex} < E_g$  (a) и  $E_{\rm ex} > E_g$  (b).

менений. Очевидно, что основная оранжевая полоса в спектрах нелегированного соединения имеет сложную природу и представляет собой суперпозицию полос, отвечающих различным механизмам рекомбинации. На это указывает тот факт, что при уменьшении плотности мощности возбуждения люминесценции удается достичь спектрального разделения полосы А (рис. 1, вставка; рис. 2, кривая 4). При этом полоса A<sub>1</sub> может быть отнесена к излучательным переходам с участием донорно-акцепторных (D-A)пар, так как положение ее максимума чувствительно к изменению плотности мощности возбуждения и смещается в высокоэнергетическую область спектра при ее уменьшении [6]. Люминесцентную полосу  $B_2$  (как и полосу  $B_1$ ), поскольку ее положение от плотности мощности возбуждения не зависит, можно связать с переходами зона-уровень. При увеличении энергии возбуждающих фотонов от 2.54 эВ (Ar<sup>+</sup>лазер) до 3.76 эВ (ксеноновая лампа) максимум полосы А смещается в высокоэнергетическую область (рис. 2, кривые 1 и 2). Однако величина этого смещения меньше фиксированного значения 0.23 эВ, приводимого в работе [7] и связываемого ее авторами в рамках конфигурационно-координатной модели с излучательными переходами с глубоких уровней в подзоны А и С валентной зоны, энергетический зазор между которыми и равен 0.23 эВ. По нашим представлениям наличие такого сдвига объясняется зависимостью рекомбинационного излучения от энергии возбуждения. В случае, когда энергия возбуждающих фотонов меньше ширины запрещенной зоны соединения  $(E_{\rm ex} < E_g)$ , доминирующим механизмом рекомбинации является взаимодействие донорно-акцепторных пар (рис. 2, a), т.е. так называемая *L*-люминесценция по аналогии с [3]. С увеличением энергии возбуждения  $(E_{\mathrm{ex}} > E_g)$  возрастает вероятность более высокоэнергетических переходов, в том числе переходов уровень-зона и зона-зона (рис. 2, b), происходит перераспределение интенсивностей полос, образующих полосу А, и результирующий максимум смещается в сторону больших величин энергии, что соответствует Н-люминесценции. Аналогичные рассуждения можно применить при рассмотрении полосы D, которая регистрируется лишь при малых энергиях фотонов ( $E_{ex} < E_q$ ), а значит, может быть приписана *D*-*A*-рекомбинации.

Исследование природы донорных и акцепторных уровней в многокомпонентных полупроводниках представляет сложную задачу, так как даже рассмотрение простейших дефектов кристаллической структуры в соединениях I–III–VI<sub>2</sub>, а именно — вакансий, атомов замещения и внедрения, приводит к двенадцати типам точечных дефектов, каждый из которых может образовывать оптически активные уровни в запрещенной зоне. Выше упоминалось, что область гомогенности диселенида меди–алюминия соответствует Cu<sub>1.1</sub>Al<sub>0.9</sub>Se<sub>1.9</sub>, т.е. смещена в сторону избытка атомов Cu и недостатка атомов Al и Se по отношению к идеальному стехиометрическому составу CuAlSe<sub>2</sub>. Учитывая это, можно представить, что основной вклад с рекомбинацию нелегированных кристаллов вносят собственные дефекты, связанные с избытком меди и вакансиями алюминия и селена. Избыточные атомы меди действуют двояко: либо занимают межузельное пространство, являясь донорами, либо замещают катионные вакансии в подрешетке алюминия, поскольку в силу близости металлохимических свойств Al и Cu вероятность образования Cu<sub>Al</sub> во много раз превосходит вероятность образования Cu<sub>Se</sub>. Факт, что выращенные кристаллы обладают проводимостью только *p*-типа, свидетельствует в пользу того, что более предпочтительным механизмом является образование V<sub>Al</sub> и Cu<sub>Al</sub>, которые ведут к появлению акцепторных уровней. В зависимости от характера химической связи в соединениях I-III-VI<sub>2</sub> (ионная или ковалентная) вакансии халькогена могут быть либо донорами, либо акцепторами [8]. Поскольку химическая связь в полупроводнике CuAlSe<sub>2</sub> является промежуточной между гомеополярной (ковалентной) и гетерополярной (ионной), наличие вакансий селена должно приводить к появлению в запрещенной зоне как донорных, так и акцепторных уровней, взаимная электрическая компенсация которых снижает их вклад в механизмы электропроводности. Поэтому увеличение количества анионных вакансий V<sub>Se</sub> не приводит к *p*-*n*-инверсии типа проводимости. Кроме того, в силу высокого давления паров халькогена в процессе роста происходит автолегирование соединения атомами Se, в результате которого в решетке появляется слабо связанный межузельный селен, являющийся акцепторной примесью. Поэтому основную оранжевую полосу А люминесценции можно представить как результат участия в ее образовании большого числа донорных и акцепторных уровней, характер взаимодействия между которыми и определяет спектральную структуру этой полосы. Очевидна также взаимосвязь между механизмами образования оранжевой полосы А и полосы С, появляющейся в спектре в результате легирования. Поскольку положение этой полосы зависит от интенсивности возбуждающего излучения, то механизмом, определяющим ее природу, является D-A-рекомбинация. Такой факт можно объяснить участием примесных уровней V<sub>Al</sub> и V<sub>Se</sub> в образовании обеих полос. В процессе отжига в силу близости ковалентных радиусов алюминия, ценка и кадмия (1.23, 1.225, 1.405 Å соответственно [7]) происходит замещение вакансий V<sub>Al</sub> атомами легирующей примеси и образование акцепторных уровней N<sub>Al</sub> (N — Zn, Cd). В пользу этого предположения говорит и невозможность получения материала *n*-типа проводимости при легировании Zn и Cd, т.е. в данном случае вероятность замещения атомами Zn и Cd вакансий в подрешетке алюминия будет больше вероятности образования дефектов внедрения, являющихся донорными. В зависимости от степени легирования происходит изменение концентрации V<sub>A1</sub> и N<sub>A1</sub>, а следовательно, интенсивности взаимодействия донорно-акцепторных пар  $V_{\rm Al}-V_{\rm Se}$ и  $N_{\rm Al} - V_{\rm Se}$ , и в результате происходит перераспределение относительных интенсивностей полос А и С (рис. 1, кривые 2, 3; рис. 2, кривая 3). При отжиге кристаллов в присутствии кадмия с алюминием вследствие диффузии атомов алюминия из газовой фазы в кристалл происходит уменьшение концентрации вакансий V<sub>Al</sub> и, следовательно, уменьшение вероятности образования дефектов Cd<sub>Al</sub>. Атомы кадмия занимают преимущественно междоузлия, что ведет к появлению в запрещенной зоне еще одного уровня, открывающего новый канал рекомбинации, а результирующий максимум при этом смещается в сторону меньших энергий (рис. 1, кривая 4). Отжиг образцов в вакууме ведет к увеличению количества собственных дефектов, причем наиболее вероятным является образование новых вакансий V<sub>Se</sub> и V<sub>Al</sub>, так как исследования состава паровой фазы над тройными соединениями показывают присутствие в ней атомов халькогена, а также газообразных молекул типа III<sub>2</sub>-VI [9]. С другой стороны, область гомогенности соединения очень мала (менее 0.02 мол. долей [5]). Поэтому даже минимальное уменьшение количества элементов Al и Se неминуемо ведет к образованию двухфазных областей и, как следствие, к гашению видимой люминесценции. Поэтому в образцах, отожженных в вакууме, фотолюминесценция не наблюдалась. Полоса В<sub>1</sub> обусловлена переходами типа зона-уровень. Она регистрируется только в спектрах люминесценции исходных кристаллов и проявляется даже в образцах стехиометрического состава, при этом ее относительная интенсивность не изменяется. В связи с этим предполагается, что в формировании полосы  $B_1$  принимают участие дефекты, обусловленные ассоциацией атомов кислорода с двукратно ионизованными атомами меди Cu<sup>++</sup>. Ионы Cu<sup>++</sup> образуются в результате окислительной реакции между ионами Cu<sup>+</sup> основной решетки и примесными атомами кислорода, поступающими в кристалл в процессе выращивания [10]. Отжиг в вакууме должен приводить к уменьшению концентрации таких дефектов и исчезновению полосы  $B_1$ , что и наблюдается экспериментально (рис. 1, кривая 5). Полоса В<sub>2</sub> хорошо различима в спектре  $\Phi \Pi$  только при  $E_{\text{ex}} > E_q$ . Отжиг в присутствии Al приводит к гашению полосы B<sub>2</sub>. Следовательно, можно предположить, что образование полосы  $B_2$  обусловлено переходами между зоной проводимости и акцепторным уровнем, создаваемым вакансиями алюминия.

В процессе исследований по спектральвной зависимости оптического пропускания в неполяризованном излучении была оценена ширина запрещенной зоны  $E_g$  соединения, величина которой составила 2.69 эВ при 77 К и 2.61 эВ при комнатной температуре.

Таким образом, люминесцентные свойства диселенида меди-алюминия определяются главным образом собственными дефектами. Отжиг в различных атмосферах приводит к существенной модификации свойств, что обусловлено происходящим в процессе термообработки изменением концентрации собственных дефектов и примесей в монокристаллах соединения.

Данная работа финансировалась в рамках Фонда фундаментальных исследований Республики Беларусь (проект Т94-150).

## Список литературы

- Л.А. Маковецкая, Б.В. Корзун, С.А. Груцо, Г.П. Попельнюк, Н.И. Желудев, В.В. Тарасенко. Весці АН БССР. Сер. фіз.-мат. навук, **3**, 50 (1991).
- [2] S.V. Popov, A.S. Semenikhin, V.V. Tarasenko, N.I. Zheludev, Yu.P. Svirko, L.A. Makovetskaya. Opt. Lett., 15, 993 (1990).
- [3] N. Yamamoto. Japan. J. Appl. Phys., 15, 1909 (1976).
- [4] M. Bettini. Sol. St. Commun., 13., 599 (1973).
- [5] B.V. Korzoun, L.A. Makovetskaya, V.A. Savchuk, V.A. Rubtsov, G.P. Popelnyuk, A.P. Chernyakova. J. Electron. Mater., 24, 903 (1995).
- [6] Ж. Панков. Оптические процессы в полупроводниках (М., 1979).)
- [7] S. Chichibu, M. Shishikura, J. Ino, S. Matsumoto. J. Appl. Phys., **70**, 1648 (1991).
- [8] H. Neumann. Cryst. Res. Techn., 18, 483 (1983).
- [9] Л.И. Бергер, С.А. Бондарь, В.В. Лебедев, А.Д. Молодык, С.С. Стрельченко. Химическая связь в кристаллах полупроводников и полуметаллов (Минск, Наука и техника, 1973).
- [10] I.A. Aksenov, I.R. Gulakov, V.I. Lipnitskii, A.I. Lukomskii, L.A. Makovetskaya. Phys. St. Sol. (a), **115**, K113 (1989).

Редактор Л.В. Шаронова

## Study of luminescence of copper-aluminium diselenide

V.A. Savchuk, B.V. Korzoun, N.A. Sobolev, L.A. Makovetskaya

Institute of Solid State and Semiconductor Physics, Academy of Sciences of Belarus, 220072 Minsk, Belarus

**Abstract** Results of complex investigations of luminescence of copper aluminium diselenide crystals are presented. It has been found that the luminescence spectrum of undoped single crystals with homogeneous composition possesses a complex structure. Modification of the luminescence was made by annealing crestals in various atmospheres. The nature of radiative transitions in this semiconductor is analyzed.