Влияние времени освещения на отжиг созданных светом метастабильных дефектов в *a*-Si: H *p*-типа

© А.Г. Казанский

Московский государственный университет им. М.В. Ломоносова, 119899 Москва, Россия

(Получена 20 мая 1996 г. Принята к печати 24 июня 1996 г.)

В области температур 360–400 К исследовано влияние времени освещения на релаксацию концентрации созданных светом метастабильных дефектов в легированных бором пленках *a*-Si:H. Релаксация концентрации происходила по растянутой экспоненте (~ $\exp(-(t/\tau_r)^{\beta})$). В области исследованных температур и времен освещения (0.1–7.0 с) коэффициент $\beta = 0.55-0.65$, а энергия активации E_a температурной зависимости эффективного времени τ_r составляла 0.97–1.07 эВ. С ростом освещения наблюдалось слабое увеличение E_a и β . Величина τ_r возрастала при увеличении времени освещения в соответствии с зависимостью, близкой к логарифмической. Проведено сопоставление полученных экспериментальных результатов с существующими микроскопическими моделями образования и отжига метастабильных дефектов в пленках *a*-Si:H.

Известно, что генерация неравновесных носителей в аморфном гидрированном кремнии (a-Si:H) приводит к образованию дефектов типа оборванных связей, которые исчезают после отжига при температурах 100-180К (в зависимости от типа и уровня легирования). Несмотря на то, что метастабильные состояния в *a*-Si: Н изучаются более 15 лет, остаются неясными микроскопические процессы, приводящие к их появлению. В настоящее время предложены два класса моделей, объясняющих кинетику изменения концентрации дефектов при их возникновении и отжиге. В соответствии с одним из них [1] процессом, определяющим скорость изменения концентрации дефектов, является диффузия водорода, участвующего в процессе образования и отжига дефектов. В пользу данной модели свидетельствует корреляция коэффициента диффузии и скорости изменения концентрации дефектов в нелегированных материалах и материалах *n*- и *p*-типа [2]. В соответствии с другим классом моделей сами дефекты, в частности распределение энергетических барьеров, соответствующих их образованию и отжигу, определяют скорость перходных процессов [3]. Согласно этим моделям [3], при образовании дефектов в результате освещения должна возникать зависимость эффективного времени релаксации (или отжига) концентрации дефектов au_r от времени освещения (t_{ill}) . Для моделей, в которых скорость переходных процессов определяется диффузией водорода, такая зависимость не ожидается [3].

Имеющиеся данные указывают на то, что большим t_{ill} соответствуют большие значения τ_r [4–6], однако зависимость τ_r от t_{ill} , насколько нам известно, не изучалась.

Такие исследования были проведены в настоящей работе для пленок *a*-Si:H *p*-типа, в которых наблюдается наибольшая среди нелегированных пленок скорость переходных процессов. Измерения проводились на пленках *a*-Si:H, полученных разложением смеси газов моносилана (SiH₄) и диборана (B₂H₆) в тлеющем разряде при температуре подложки (кварц) 250 °С. Объемное отношение B_2H_6 к SiH₄ в камере реактора составляло $k = 10^{-5}$. Световая деградация образцов осуществлялась излучением лампы накаливания через тепловой фильтр с интенсивностью 60 MBT/cm^2 . Перед измерениями пленки отжигались в вакууме 10^{-3} Па в течение 30 мин при температуре 180 °C. Изменения проводимости (σ) после выключения освещения регистрировались с помощью запоминающего цифрового осциллографа С9–8. Импульс освещения в пределах 0.05–10 с формировался фотозатвором.

На рис. 1 показано влияние времени освещения при различных температурах на относительную величину проводимости σ_B/σ_A , где σ_A и σ_B — соответственно проводимость отожженного образа и проводимость образца после его освещения. Измерения проводились через 3 с после выключения освещения. Как видно, зависимость $\sigma_B(t_{ill})$ имеет немонотонный характер. σ_B уменьшается при малых временах и возрастает при боьших временах освещения. Время t_m , соответствующее минимальному значению σ_B , уменьшается с ростом температуры. Подобная зависимость указывает на возможнсть конкуренции двух процессов, определяющих изменение σ_B . Первый процесс, определяющий уменьшение σ_B при малых временах, связывают с увеличением концентрации дефектов и смещением уровня Φ ерми (E_F) к середине щели подвижности [7,8]. Относительно процесса, приводящего к увеличению σ_B , единая точка зрения отсутствует. По мнению авторов [7], увеличение σ_B связано с ростом концентрации электрически активных атомов бора под влиянием освещения. В то же время в работе [8] увеличение σ_B объясняют образованием в результате освещения дефектов в слое окисла на поверхности пленки, приводящем к изгибу зон вблизи поверхности пленки и созданию обогащенного носителями слоя.

Как видно из рис. 1, для корректного исследовния влияния t_{ill} на τ_r в условиях создания лишь оборванных связей необходимо проводить измерения при $t_{ill} < t_m$.

Рис. 1. Зависимость относительной проводимости (σ_B/σ_A) пленки *a*-Si:H, легированной бором, от времени освещения (t_{ill}) при различных температурах T, K: 1 - 360, 2 - 380, 3 - 400.

На вставке рис. 2 показана релаксация проводимости после освещения пленки в течение времени t_{ill}. После выключения света наблюдается уменьшение σ , связанное с релаксацией фотопроводимости, до значений, меньших σ_A . Затем σ возрастает стремясь к σ_A , что связано с отжигом дефектов, созданных светом, и соответственно смещением уровня Ферми к краю валентной зоны. Смещение уровня Ферми относительно его положния в отожженном образце (E_F^A) определяется выражением $\Delta E_F = E_F^B - E_F^A = kT \cdot \ln(\sigma_A/\sigma_B)$. Ha puc. 2 показана релаксация ΔE_F , соответствующая области увеличения σ (области отжига дефектов), после освещения пленки в течение различного времени. Для $t_{ill} = 0.52$ с показан также участок изменения ΔE_F , соответствующий релаксации фотопроводимости.

В предположении независимости плотности состояний от энергии в области смещения E_F можно считать, что $\Delta N \sim \Delta E_F$, где ΔN — изменение концентрации дефектов, приводящее к смещению E_F . Таким образом, релаксация ΔE_F в области увеличения σ должна отражать релаксацию концентрации созданных светом дефектов.

Из рис. 2 видно, что на кривой релаксации ΔE_F (соответствующей области увеличения σ) можно выделить два участка — участок быстрого спада ΔE_F и участок изменения ΔE_F , который можно описать растянутой экспонентой ($\Delta E_F F \sim \exp(-(t/\tau_r)^{\beta})$). Расчетные кривые для второго участка показаны на рис. 2. По мере увеличения времени освещения вклад первого участка в релаксацию ΔE_F уменьшается. Заметим, что в работах [9,10] с помощью измерения переходной емкости в p - n-структурах на основе a-Si: Н исследовалась релаксация концентрации дефектов в *a*-Si: Н *p*-типа, создаваемых в результате инжекции носителей импульсами напряжения различной длительности (τ_i). Авторы [9,10] также наблюдали два характерных участка на кривой релаксации, первой из которых описывается степенной зависимостью и исчезает при увеличении длительности импульса инжекции, а второй удовлетворительно описывается растянутой экспонентой. Используя модель образования дефектов Адлера [11], авторы [9,10] объясняют наличие первого участка происходящим при образовании метастабильного дефекта изменением конфигурации. Второй участок релаксации связывается с отжигом метастабильных дефектов.

В исследованной области температур 360–400 К и длительностей освещения 0.1-7 с коэффициент $\beta = 0.55-0.65$, а энергия активации E_a температурной зависимости τ_r составляла 0.97-1.07 эВ, что соответствует энергиям активации отжига дефектов, полученным в других работах [3]. С ростом t_{ill} наблюдалось слабое увеличение E_a и β .

На рис. З показаны зависимости τ_r от t_{ill} , полученные из анализа второго участка кривых релаксации ΔE_F для различных температур. На этом же рисунке для сравнения представлена зависимость τ_r от t_i , полученная при T = 439 К в работе [10] для слаболегированного *a*-Si: Н *p*-типа. Согласно [10], $\tau_r \sim \ln(t_i)$. Наши данные для τ_r также удовлетворительно описываются логарифмической зависимостью от t_{ill} (см. рис. 3). Полученная нами зависимость $\tau_r(t_{ill})$ оказалась сущестенно слабее зависимости, предсказываемой теорией ($\tau_r \sim t_{ill}$), развитой в работе [3] в предположении экспоненциального распределения концентрации дефектов по энергиям их образования. Наблюдаемое отличие может быть связано с более слабой зависимостью концентрации

102

t,s

10³

10⁴

10 ⁵

0.08

0.06

∧a, ⁴0.04

0.02

0

10⁰

10¹

Рис. 3. Зависимости времени релаксации τ_r от времени освещения t_{ill} при различных температурах (1-3), полученные в настоящей работе, и от времени инжекции (t_i) при T = 439 К, полученные в работе [4]. Штриховые кривые соответствуют логарифмической зависимости. T, К: 1 - 360, 2 - 380, 3 - 400.

дефектов от энергии их образования по сравнению с экспоненциальной. Тем не менее полученные результаты указывают на то, что скорость образования и отжига метастабильных дефектов в значительной степени связана непосредственно с самими дефектами и определяется двухступенчатым процессом, состоящим из захвата носителя на состяние, являющееся источником возникновения оборванной связи, и затем разрывом связи.

Автор выражает искреннюю благодарность проф. В. Фусу и д-ру Х. Меллу за предоставление пленок *a*-Si:H *p*-типа.

Работа выполнена при финансовой поддержке Госкомвуза РФ (грант N 95-0-7.I-153) и INTAS (грант N 93-1916).

Список литературы

- W.B. Jackson, J. Kakalios. Phys. Rev. B, 37, 1020 (1988).
- [2] W.B. Jackson, J.M. Marshall, M.D. Moyer. Phys. Rev. B, **39**, 1164 (1989).
- [3] R.S. Crandall. Phys. Rev. B, 43, 4057 (1991).
- [4] T.J. McMahon, R. Tsu. Appl. Phys. Lett., 51, 412 (1987).
- [5] T. Kumeda, H.A. Morimoto, T. Shimizu. Jap. J. Appl. Phys., 25, L654 (1986).
- [6] R.S. Crandall. Phys. Rev. B, **36**, 2645 (1987).
- [7] J. Jang, S.C. Park, S.C. Kim, C. Lee. Appl. Phys. Lett., 51, 1804 (1987).
- [8] А.Г. Казанский. Вест. МГУ, Сер. 3, Физика астрономия, 33, 70 (1992).

- [9] M.W. Carlen, Y. Xu, R.S. Crandall. Phys. Rev. B, 51, 2173 (1995).
- [10] R.S. Crandall, M.W. Carlen. J. Non-Cryst. Sol., 190, 133, (1995).
- [11] D. Adler. Solar Cells, 9, 133 (1982).

Редактор В.В. Чалдышев

The influence of illumination time on annealing light-induced metastable defects in a p-type a-Si: H

A.G. Kazanskii

Moscow State University, 119899 Moscow, Russia

Abstract The influence of illumination time on relaxation of light-induced defect densiti in a boron-doped *a*-Si: H has been studied in the 360–400 K temperature range. Decay kinetics for these light-induced defects is expressed by an extended exponential function $(\exp(-(t/\tau_r)^{\beta}))$. The activation energy E_a of the temperature dependence of the characteristic time τ_r is 0.97–1.07 eV and parameter β is 0.55–0.65 within the investigated temperature range and 0.1–7.0 s illumination time. The values of E_a and β increase slightly when the illumination time exhibits a logarithmic dependence. Experimental results are discussed in the framework of existing microscopic models of metastable defects in *a*-Si:H.

E-mail: Kazanski @scon279.phys.msu.su