Структура и электропроводность пленок поликристаллического кремния, полученных молекулярно-лучевым осаждением с сопутствующей низкоэнергетической ионной бомбардировкой поверхности роста

© Д.А. Павлов, А.Ф. Хохлов, Д.В. Шунгуров, В.Г. Шенгуров

Нижегородский госуниверситет им. Н.И.Лобачевского, 603600 Нижний Новгород, Россия

Получена 12 марта 1996 г. Принята к печати 5 мая 1996 г.

Изучено влияние условий получения пленок поликристаллического кремния методом молекулярно-лучевого осаждения на их структуру и электропроводность. Показано, что приложение к подложке отрицательного относительно кремниевого источника напряжения в интервале от 50 до 300 В приводит к формированию более совершенных пленок по сравнению с пленками, полученными в обычных условиях. Они имеют также более высокую электропроводность. Полученные данные объясняются влиянием бомбардировки растущей пленки ионами легирующей плимеси.

Введение

Пленки поликристаллического кремния (ППК) широко используются в интегральных схемах и солнечных элементах [1,2]. Среди различных методов получения ППК метод молекулярно-лучевого осаждения (МЛО) привлекает внимание исследователей возможностью получения пленок при низких температурах, устранения фоновых примесей и контролируемого введения легирующей примеси [3]. Кроме того, условия осаждения пленок могут варьироваться в очень пироких пределах.

Дополнительное управление параметрами растущей пленки можно обеспечить при облучении поверхности роста низкоэнергетическими ионами [4–8]. Ранее это было продемонстрировано при наращивании в высоком вакууме пленок кремния [4,5] и металлов [6], где наблюдалось снижение температуры эпитаксиального роста и достижение сплошности пленок на более ранней стадии. Электроннолучевое напыление аморфных кремниевых пленок с приложением к подложке потенциала приводило к формированию больших кластеров (от 20 до 100 нм в диаметре) [7].

Для ППК практически отсутствуют аналогичные исследования. Вто же время существует потребность в дополнительном контроле параметров роста с целью получения таких пленок с заданными свойствами. Кроме того, установление связи между параметрами ионного пучка (плотность, энергия ионов) и свойствами пленок должно способствовать выявлению механизма роста пленок под воздействием низкоэнергетических ионов.

Цель работы — исследование структуры и электропроводности тонких ППК, полученных методом МЛО путем сублимации кремния с приложением к подложке отрицательного относительно кремниевого источника потенциала.

Методы исследования

Поликристаллические пленки были получены сублимацией кремния по методике, подробно описанной в работе [3]. В качестве источника паров кремния и легирующей примеси были использована прямоугольная пластина, вырезанная из монокристалла кремния, легированного галлием до концентрации $\sim 5 \cdot 10^{19}$ см⁻³. Выбор легирующей примеси обусловлен тем обстоятельством, что ранее [4,5,9] было установлено наличие ионной составляющей в молекулярном потоке из сублимирующего монокристалла кремния, легированного галлием. Выращивание эпитаксиальных слоев с приложением к подложке отрицательного относительно источника потенциала приводило к увеличению концентрации легирующей примеси (Ga) в слое, а приложение положительного потенциала — к ее уменьшению [5]. В данной работе рост слоев проводился приложением к подложке отрицательного потенциала $V_b = -(50 \div 300)$ В.

Схема эксперимента приведена на рис. 1. Подложкодержатель, как и источник, был вырезан из монокристалла кремния и нагревался пропусканием тока. Падение напряжения на концах пластин составляло ~ 10 В. Толщина пленок составляла $0.1 \div 0.5$ мкм. Температура подложки варьировалась от 300 до 600 °C.

Определение размеров зерен в пленках и расчет размеров блоков из размеров областей когерентного рассеяния (OKP) проводились по данным методов электронографии (дифракции проходящего электронного пучка) и электронной микроскопии на просвет. Морфология поверхности пленок исследовалась методом реклик.

При измерениях слоевого сопротивления использовалась компланарная конфигурация контактов с зазором 1 мм. Нарпяженность электрического поля при измерениях не превышала 10² В/см.

Рис. 1. Схема получения кремниевых пленок методом сублимации кремния с облучением поверхности роста низкоэнергетическими ионами: 1 — подложкодержатель, 2 — подложка, 3 — экран, 4 — источник.

1. Результаты исследования

Структура пленок. Проведенные нами исследования показали, что размер зерна ППК линейно растет с повышением температуры осаждения (рис. 2, *a*). При температуре подложки $T_s \ge 500$ °C он приближается к величине, сравнимой с толщиной пленки. При таких температурах размер OKP¹ достигает насыщения (рис. 2, *b*).

О влиянии температуры подложки и величины потенциала на структуру пленок можно судить по изменению картин дифракции. На рис. 3 приведены дифрактограммы пленок, выращенных при температурах 300, 400 и 450 °C с приложением к подложке потенциала $V_b = -300$ В. Здесь же приведены дифрактограммы от пленок, выращенных без приложения потенциала.

В том случае, когда потенциал прикладывался при низких температурах осаждения ($T_s \leq 300$ °C), структура пленок оставалась аморфной. При этом отмечалось лишь некоторое обострение дифракционных максимумов (рис. 3, кривые 3, *a*, *b*). При приложении к подложке отрицательного потенциала $V_b = -300$ В размер ОКР возрастает от 2.8 до 3.3 нм. Поскольку этот параметр для аморфного материала характеризует область распространения ближнего порядка, можно заключить, что облучение низкоэнергегическими ионами в процессе формирования аморфной структуры приводит к ее упорядочению.

На рис. 3 представлены также дифрактограмы пленок, выращенных при $T_s = 450$ °C. Обе пленки (кривые 1, с и 2, с) являются поликристаллическими. Влияние потенциала на подложке проявляется в том, что дифракционные пики становятся более узкими и имеют большую интенсивность. В пленках, полученных с приложением потенциала, размер ОКР, который в данном случае следует отождествлять с размером блоков внутри зерна, увеличивается от 10 до 12 нм. Таким образом и здесь можно говорить о положительной роли дополнительного облучения в процессе формирования структуры пленок.

Самый интересный, на наш взгляд, результат получается при температуре роста $T_s = 400$ °С. В этом случае, в отсутствие смещения структура пленки оказывается аморфной (рис. 3, кривая 1, b), в то время как со смещением формируется поликристаллическая структура (кривая 2, b). Отличия в структуре материала можно наглядно проиллюстрировать с помощью микрофотографии угольных реплик от поверхности этих пленок. Поверхность аморфной пленки (рис. 4, a) характеризуется слабой шероховатостью, в то время как на поверхности поликристаллической пленки мы видим хорошо развитый рельеф зерен (рис. 4, b).

Следует отметить, что изменение величины отрицательного потенциала в пределах от 50 до 300 В не выявило дополнительного различия в структуре пленок. Более важен, по-видимому, сам фактор дополнительного облучения, чем энергия бомбардирующих ионов.

Рис. 2. Зависимость размера зерна (a) и блоков (b) от температуры осаждения пленок поликремния.

¹ Размер области когерентного рассеяния в поликристаллах часто оказывается меньше размеров зерен и обычно отождествляется с усредненным размером блоков, на которые они разбиты. Это размер D вычислеяется исходя из углового уширения дифракционных максимумов Δs по формуле Шеррера $D = 4\pi k/\Delta s$, где k — константа Шеррера (≈ 1).

Слоевое сопротивление кремниевых пленок, полученных при разных режимах осаждения

№	T_s , °C	d, мкм	V_b , B	$R_s, \operatorname{Om}/\Box$
256	400	0.1	300	$2.9\cdot 10^9$
257	450	0.1	300	$1.1 \cdot 10^8$
258	450	0.1	0	$9.3\cdot 10^9$
259	400	0.1	0	$1.2\cdot 10^{10}$
260	400	0.1	150	$3.5\cdot 10^9$
262	400	0.1	0	$3.0\cdot10^{10}$
263	450	0.5	300	$5.7\cdot 10^7$

Электропроводность пленок. Результаты измерений слоевого сопротивления пленок (R_s) при комнатной температуре в зависимости от температуры осаждения, величины прикладываемого к подложке потенциала и толщины пленки приведены в таблице. Видно, что с повышением температуры подложки сопротивление понижается. Пленки, выращенные с приложением отрицательного потенциала, имеют сопротивление на 1 или 2 порядка величины меньше, чем при выращивании без потенциала.

Обсуждение результатов

Влияние температуры подложки на структуру ППК. Анализ полученных экспериментальных результатов позволяет заключить, что повышение температуры роста улучшает структуру пленок. Это согласуется с существующей моделью роста ППК как при вакуумном, так и при газотранспортном методах осаждения [10]. Согласно этой модели, при низкой температуре роста подвижность адатомов мала и пленка растет практически из жестко закрепленных

Рис. 3. Дифрактограммы кремниевых пленок при различных температурах T_s : a = 300, b = 400, c = 450 °C. 1 — без смещения на подложке, $2 = V_b = -300$ В.

зародышей. С повышением температуры роста подвижность адатомов кремния повышается и возрастает коалесценция зародышей. В результате пленки растут с более крупным размером зерна. На оголенных участках подложки происходит зарождение новых зародышей, которые либо мигрируют к более крупным, либо разрастаются самостоятельно.

Влияние приложения к подложке потенциала на структуру ППК. Наши экспериментальные результаты показывают, что приложение к подложке отрицательного потенциала в процессе наращивания пленок, как и повышение температуры, улучшает их структуру. Приложение отрицательного потенциала ускоряет движение ионов, имеющихся в молекулярном потоке, по направлению к подложке. Из имеющихся в литературе качественных соображений о механизмах воздействия ионной бомбардировки на структуру осажденных пленок можно выделить усиление поверхностной диффузии адатомов [11]. На ранних стадиях роста пленки падающие на поверхность ионы приводят к формированию зародышей (кластеров) бо́льших размеров по сравнению с осаждением без воздействия ионов. Увеличение размера кластера вызвано, вероятно, как увеличением подвижности адатомов, так и разрушением или распадом меньших зародышей вследствие ионной бомбардировки. Кластеры с некоторым субкристаллическим размером будут распадаться на свободные адатомы под воздействием падающих ионов [12]. Само увеличение поверхностной диффузии адатомов может быть вызвано формированием небольших поверхностных каскадов соударений. Наблюдаемый в наших опытах рост пленки с однородными по размеру зернами при воздействии ионов на поверхность роста, повидимому, обусловлен тем, что на межкластерных участках практически не происходит зарождение новых зародышей.

Возможны также и другие механизмы влияния ионной бомбардировки на структуру пленок, менее существенные в наших экспериментах. Например, тепловой эффект от воздействия потока ионов на поверхность роста, который обычно учитывают, если приносимая ионами энергия превышает 1 Вт/см²·с [11].

Влияние приложения к подложке потенциала на электропроводность пленок. Наблюдаемое в эксперименте уменьшение сопротивления пленок при выращивании их с приложением к подложке потенциала связано, на наш взгляд, с изменением механизма захвата легирующей примеси (галлия) растущим слоем кремния. При наращивании пленок без приложения к подложке потенциала, как и в случае наращивания эпитаксиальных слоев кремния, галлий сегрегирует на его поверхности роста и лишь небольшая его часть внедняется в растущий кристалл [13]. Приложение к подложке потенциала усиливает бомбардировку поверхности роста низкоэнергетическими ионами. При

Рис. 4. Микрофотография угольных реплик от поверхности пленок кремния, выращенных при $T_s = 400^{\circ}$ С без смещения на подложке (*a*) и при $V_b = -300$ В. Увеличение — 16000.

этом часть атомов галлия, находящихся на поверхности роста, внедряется в зерно как атомы отдачи [5]. Кроме того, вероятность встраивания легирующей примеси в кристалл повышается и за счет усиления поверхностной диффузии адатомов галлия. Активация процесса захвата примеси возможна и за счет генерации дефектов при бомбардировке поверхности пленки падающими ионами.

Заключение

1. Аморфные и поликристаллические пленки кремния, выращенные при сублимации легированного галлием монокристалла кремния на подложке с небольшим отрицательным смещением, имеют более совершенную структуру, чем пленки, выращенные без смещения. При этом понижается граничная температура роста, определяющая переход от формирования аморфной струткруы к поликристаллической. Улучшение структуры пленок в бо́льшей степени связано с усилением поверхностной диффузии адатомов под воздействием ионной бомбардировки поверхности роста.

2. Наблюдаемое в экспериментах увеличение электропроводности ППК, выращенных с приложением к подложке отрицательного потенциала, можно объяснить увеличением вероятности захвата галлия растущим слоем под действием ионов и улучшением структурных характеристик материала.

Список литературы

- [1] Ф.Л. Эдельман. Структура компонентов БИС (Новосибирск, Наука, 1980).
- [2] В.М. Колешко, А.А. Ковалевский Поликристаллические пленки полупроводников в микроэлектронике (Минск, Наука, 1978).
- [3] Д.А. Павлов, В.Г. Шенгуров, Д.В. Шенгуров, А.Ф. Хохлов. ФТП, **29**, 286 (1995).
- [4] П.В. Павлов, В.Н. Шабанов, В.Г. Шенгуров, А.В. Кожухов. Поверхность, № 11, 153 (1990).
- [5] В.Г. Шенгуров, В.Н. Шабанов. Поверхность, № 12, 98 (1993).
- [6] В.С. Постников, И.В. Золотухин, В.Н. Моргунов, В.М. Иевлев. ФММ, 29, 441 (1970).
- [7] R.V. Kruzelecky, D. Racansky, S. Zukotynski, Y.C. Koo, J.M. Peza. J. Non-Cryst. Sol., **104**, 237 (1988).
- [8] Ф.С. Лютович. Рост кристаллов, 14, 34 (1983).
- [9] А.В. Кожухов, Б.З. Кантер, С.И. Стенин, Б.М. Туровский, С.А. Чесноков. Поверхность, № 3, 160 (1989).
- [10] Ю.Д. Чистяков, И.В. Коробов, В.О. Филипенко и др. Электрон. техн., № 9, 38 (1975).
- [11] M. Marinov. Thin Sol. Films, 46, 267 (1977).
- [12] H.R. Kaufmann, R.S. Robinson. J. Vac. Sci. Tech., 16, 179 (1979).
- [13] G.E. Beoker, J.C. Bean. J. Appl. Phys., 48, 3395 (1977).

Редактор В.В. Чалдышев

Structure and electroconductivity of polycrystalline silicon films deposited by molecular beams with accelerating voltage

D.A. Pavlov, A.F. Khokhlov, D.V. Shengurov, V.G. Shengurov

University of Nizhni Novgorod, 603600 Nizhni Novgorod, Russia

Abstract Polycrystalline silicon (poly-Si) films have been prepared by silicon sublimation method with a negative potential $V_b = 50-300$ V on substrate. The electron diffraction shows that the structure of poly-Si improves using $V_b = -300$ V. Conductivity of films prepared using negative substrate bias is higher than that in case $V_b = 0$ V.

E-mail: rector@nnucnit.nnov.su (A.F.Khokhlov)