## УДК 621.315.592

## Фотовольтаический эффект гетероконтакта *p*-CuInSe<sub>2</sub>/зеленый лист

© В.Ю. Рудь\*, Ю.В. Рудь, В.Х. Шпунт

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия \* Санкт-Петербургский государственный технический университет, 195251 Санкт-Петербург, Россия

(Получена 16 октября 1995 г. Принята к печати 19 октября 1995 г.)

Созданы фоточувствительные гетеропереходы *p*-CuInSe<sub>2</sub> / зеленый лист. Рассмотрены результаты измерений поляризационных индикатрис фототока, спектральных зависимостей квантовой эффективности фотопреобразования и естественного фотоплеохроизма гетеропереходов. Поляризационные зависимости фоточувствительности дают основания считать, что верхней валентной зоной в CuInSe<sub>2</sub> является Г<sub>7</sub>. Обнаружен эффект окна в отношении фоточувствительности и сделан вывод о возможностях применения гетеропереходов в качестве фотопреобразователей интенсивности и поляризации излучения.

Тройное соединение CuInSe<sub>2</sub> кристаллизуется в структуре халькопирита и по совокупности своих фундаментальных параметров в настоящий период обрело статус элитного материала для создания высокоэффективных и дешевых тонкопленочных фотопреобразователей солнечной энергии в электрическую [1,2]. На его основе уже созданы гетеропереходные фотопреобразователи с коэффициентом полезного действия (кпд) до 17% [2-6]. Для получения таких структур применяются практически все методы, которыми сейчас располагает полупроводниковое материаловедение [1]. Параллельно с этим не прекращается поиск новых компонент гетероперехода на основе CuInSe<sub>2</sub>, которые позволили бы снизить стоимость фотопреобразователей, улучшить их экологические параметры и поднять коэффициент полезного действия. В круг таких исследований, например, вовлекаются естественные минералы [7], обсуждается возможность "уйти" от использования кадмия, который применяется в структурах CuInSe<sub>2</sub>/CdS и считается экологически опасным элементом. Для упомянутой структуры, в которой реализован максимальный кпд, обнаружена также интердиффузия меди в CdS, что вызывает понижение квантовой эффективности фотопреобразования в области фотоактивного поглощения в CuInSe<sub>2</sub> [8]. В этой связи в данной работе было предпринято исследование возможности применения в качестве широкозонной компоненты для гетеропереходов на основе CuInSe<sub>2</sub> зеленых листьев, на возможность использования которых в фотопреобразователях было указано в работе [9]. Очевидно, что применение заленых листьев в фотопреобразователях позволит решить как экологический, так и экономический аспекты этой проблемы.

Для создания гетеропереходов применялись электрически однородные монокристаллы CuInSe<sub>2</sub> *p*-типа проводимости с концентрацией свободных дырок  $p \simeq 5 \cdot 10^{16} \, {\rm cm^{-3}}$  при  $T = 300 \, {\rm K}$ , выращенные методом направленной кристаллизации близкого к стехиометрии CuInSe<sub>2</sub> расплава. В ряде случаев применялись

пластины с ориентациями (100) и (001) при средних размерах  $5 \times 5 \times 1$  мм<sup>3</sup>. Поверхность пластин подвергалась механической, а затем химической полировке. В качестве омического контакта использовались полученные термическим напылением в вакууме слои золота, к которым посредством пайки чистым индием крепились токовые проводники. В качестве зеленых листьев обычно применялись листья Syringa L., которые для краткости обозначим L. Гетеропереход создавался наложением листа L на поверхность CuInSe<sub>2</sub>. В качестве омического контакта к листу применялся полупрозрачный слой металла (Мо, Ni, Au), нанесенный на поверхность стеклянной пластинки. Одновременно с электрическим контактом эта пластина позволяла осуществить равномерный по площади зеленого листа механический контакт p-CuInSe<sub>2</sub>/L. Как следует из стационарной вольтамперной характеристики, на таких структурах воспроизводимо обнаруживается выпрямление с коэффициентом  $2 \div 3$  при смещениях  $2 \div 5$  В, которое в области использованных механических напряжений прижима контактирующих сред не сказывалось на электрических параметрах контакта  $CuInSe_2/L$ . Пропускное направление этих структур отвечало отрицательной полярности внешнего смещения на листе.

При освещении структур CuInSe<sub>2</sub>/L возникало фотонапряжение, причем лист заряжался отрицательно относительно CuInSe<sub>2</sub>, а полярность не изменялась при изменении длины волны излучения и при локализации светового зонда на самой структуре. Это обстоятельство позволяет считать, что в процессе разделения фотогенерированных носителей участвует только один энергетический барьер, который возникает в результате приведения в контакт поверхностей CuInSe<sub>2</sub> и зеленого листа. Следовательно, зеленый лист может быть подобно CdS, электролитам и т.п. использован при создании энергетического барьера на CuInSe<sub>2</sub> [1,10,11].

Типичная спектральная зависимость относительной квантовой эффективности  $\eta$  гетероструктуры

0.2  $\eta, arb. units$ 10 0.1 1 л 2.0 1.0 ħω, eV

1.65

товой эффективности  $\eta$  гетероконтакта p-CuInSe<sub>2</sub>/L (1) и коэффициента оптического пропускания Т\* зеленого листа (2), использованного при создании гетероконтакта, в неполяризованном излучении.  $T = 300 \, \text{K}$ , освещение со стороны зеленого листа.

 $CuInSe_2/L$ , наблюдаемая при ее освещении со стороны зеленого листа, приведена на рис. 1. Эта зависимость имеет характерный для полупроводниковых гетеропереходов вид. Длинноволновый край фоточувствительности полученных гетеропереходов экспоненциален и характеризуется крутизной  $\sim 40 \, \mathrm{sB^{-1}}$ . Излом в спектре  $\eta$  при  $\hbar\omega = 1.02$  эВ и спектральное положение длинноволнового края фоточувствительности позволяют отнести эти особенности к фотоактивному поглощению в CuInSe<sub>2</sub>. В этом случае крутизна длинноволнового края фоточувствительности гетероперехода находится в соответствии с прямым межзонным переходом для CuInSe<sub>2</sub>. Длинноволновый спад фоточувствительности гетероперехода  ${
m CuInSe_2/L},$  который проявился при  $\hbar\omega\gtrsim 1.65\,{
m sB},$  а также подъем фоточувствительности при  $\hbar\omega>1.8\,\mathrm{sB}$ находятся в качественном соответствии со спектральной зависимостью коэффициента оптического пропускания зеленого листа (рис. 1). По этой причине коротковолновый спад  $\eta$  можно связать с поглощением излучения в широкозонной компоненте гетероперехода, через которую излучение поступает в активную область структуры. В диапазоне между энергиями поглощаемых фотонов 1.02÷1.85 эВ квантовая эффективность гетероперехода остается практически неизменной, что указывает на достаточно эффективный процесс разделения фотогенерированных пар в созданных структурах. При освещении таких гетеропереходов со стороны узкозонной компоненты CuInSe<sub>2</sub> эффективность фотопреобразования существенно падает и имеет узкоселективный характер с максимумом вблизи ширины запрещенной зоны CuInSe<sub>2</sub>. Это объясняестя поглощением излучения в приповерхностном слое кристалла.

При воздействии на гетеропереходы, представляющие собой контакт ориентированных пластин CuInSe2 с зелеными листьями, линейно поляризованным светом фоточувствительность обнаруживает характерные для одноосной среды особенности. Так, при ориентации пластины CuInSe<sub>2</sub> в плоскости (100) (рис. 2, кривая 1) поляризационная индикатриса фототока следует периодическому закону  $i = i^{\parallel} \cos^2 \varphi + i^{\perp} \sin^2 \varphi$ , где  $i^{\parallel}$  и  $i^{\perp}$  — фототоки, когда электрический вектор световой волны Е соответственно параллелен или перпендикулярен тетрагональной оси кристалла C, а  $\varphi$  — азимутальный угол между  ${f E}$  и  ${f C},$  причем  $\varphi=0^\circ$  в случае  ${f E}\parallel {f C}.$ Важно подчеркнуть, что поляризационное отношение  $i^{\parallel}/i^{\perp}$  > 1, и это позволяет считать, что верхняя валентная зона в  $CuInSe_2$  имеет симметрию  $\Gamma_7$ , и поэтому прямые А-переходы с наименьшей энергией преимущественно разрешены в поляризации Е || С, как в случае тетрагонально сжатых полупроводников [12]. Для гетеропереходов на основе ориентированных в плоскости (001) пластин CuInSe<sub>2</sub> поляризационные индикатрисы вырождаются в прямую (рис. 2, кривая 2), что и должно быть при распространении излучения вдоль тетрагональной оси С.

Поляризационные индикатрисы фототока гетероперехода оказались такими же, как и для монокристаллов CuInSe<sub>2</sub>. Следовательно, наличие "широкозонной" компоненты в гетеропереходе не влияет на сотояние линейно поляризованного излучения, про-



10<sup>2</sup>

1.02







Рис. 3. Спектральная зависимость коэффициента естественного фотоплеохроизма гетероконтакта p-CuInSe<sub>2</sub>/L. T = 300 K; освещение со стороны зеленого листа; пластина ориентирована в плоскости (100).

никающего в активную область таких структур через слой листа.

На рис. 3 приведена типичная спектральная зависимость коэффициента естественного фотоплеохроизма  $\mathcal{P}_i^N = (i^{\parallel} - i^{\perp})/(i^{\parallel} + i^{\perp})$  гетероструктуры на основе ориентированной в плоскости (100) пластины p-CuInSe<sub>2</sub>. Положительный знак и величина коэффициента находятся в соответствии с полученными для гемопереходов n-p-CuInSe<sub>2</sub> [13]. Максимум положительного коэффициента фотоплеохроизма реализуется при энергии А-перехода, тогда как низкое значение обусловлено слабой тетрагональной деформацией кристаллической решетки CuInSe<sub>2</sub>. Следует подчеркнуть при этом, что положительный знак коэффициента естественного фотоплеохроизма не отвечает предсказываемому на основе квазикубической модели [12] с учетом растяжения кристаллической решетки CuInSe<sub>2</sub> вдоль направления [001]. Последнее может быть обусловлено тем, что влияние других компонент некубического потенциала, как, например, смещение аниона, в данном случае играет определяющую роль, и поэтому правила отбора для межзонных переходов остаются такими же, как и в сжатых вдоль направления [001] полупроводниках с решеткой халькопирита [14].

Таким образом, на основании выполненных исследований обнаружено, что контакт CuInSe<sub>2</sub> с зелеными листьями может применяться при создании широкополосных фотопреобразователей естественного и линейно поляризованного излучения. На основании сопоставления спектральных зависимостей с известными для контакта CuInSe<sub>2</sub>/жидкий электролит [10] можно полагать, что зеленый лист в изученных структурах играет роль жидкого электролита. Следует подчеркнуть, что в случае гетеропереходов CuInSe<sub>2</sub>/L отпадает необходимость в создании кюветы для удержания жидкости. Как показали наши измерения, для структуры CuInSe<sub>2</sub>/L эффекты деградации фототока не наблюдались в течение  $2 \div 3$ суток для отделенного от растения листа, прижатого к поверхности CuInSe<sub>2</sub> стеклом. Очевидно, что если сформировать такой гетеропереход на листе, который находится на растении, процесс фотопреобразования во времени будет определяться только жизненными процессами в растении, и деградация будет исключена. Исследования также показали, что свойства гетеропереходов нечувствительны к тому, какая поверхность листа касается кристалла: верхняя или нижняя. Поэтому если в качестве гетерограницы взять нижнюю поверхность листа, тогда его внешняя поверхность будет ориентироваться растением на источник света (солнце, лампа и т.п.), и отпадает необходимость в создании специальных систем, ориентирующих фотоприемную поверхность фотопреобразователя на источник световой энергии. Эта последняя особенность нового фотопреобразователя, возникающего на контакте синтетического вещества с участвующим в процессе жизнедеятельности биологическим объектом (зеленым листом), может сыграть в определенных условиях решающую роль.

Авторы признательны профессору Г.-В. Шоку и участникам семинара INTAS (Stuttgart, 26.10.95) за обсуждение и интерес к данной работе.

Работа выполнена при финансовой поддержке в рамках проекта INTAS-94-3998.

## Список литературы

- Copper Indium Diselenide for Photovoltaic Applications, ed. by T.J. Coutts, L.L. Kazmerskii, S. Wagner (Elsevier, Amsterdam, 1986).
- [2] J. Hedstrom, H. Olsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H.W. Schock. Proc. 23rd IEEE Photovoltaic Specialists Conf. (1993) p. 364.
- [3] N.Kohara, T. Negami, N. Nishitani, T. Wada. Japan. J. Appl. Phys., 34, L1141 (1995).
- [4] T. Wada. Book Abstr. ICTMC-10 (Stuttgart, 1995) p. 4.
- [5] L. Stolt. Book Abstr. ICTMC-10 (Stuttgart, 1995) p. 5.
- [6] T. Walter, M. Ruckh, K.O. Velthaus, H.W. Schock. Proc. 11th Photovoltaic Solar Energy Conf. (Nontreux, Switzerland, 1992) p. 124.
- H. Dittrich, D.J. Vanghan, R.A. Pattric, S. Graeser,
   E. Makovicky, M. Lux-Steiner, R. Kunst, D. Lincol. Book Abstr. ICTMC-10 (Stuttgart, 1995) p. 10.
- [8] N.N. Konstantinova, Yu.V. Rud', T.N. Ushakova. Book Abstr. ICTMC-10 (Stuttgart, 1995).
- [9] В.Ю. Рудь, Ю.В. Рудь, В.Х. Шпунт. ФТП, 29, 438 (1995).
- [10] Н.Н. Константинова, М.А. Магомедов, В.Ю. Рудь, Ю.В. Рудь. ФТП, 26, 558 (1992).
- [11] Н.Н. Константинова, В.Д. Прочухан, Ю.В. Рудь, М.А. Таиров. ФТП, 22, 3584 (1988).
- [12] J.L. Shay, J.H. Wernick. Ternary Chalcopyrite Semiconductors (Pergamon Press, N.Y., 1975) p. 244.
- [13] И.В. Боднарь, А.А. Вайполин, В.Ю. Рудь, Ю.В. Рудь. ФТП, 28, 1322 (1994).
- [14] Yu.V. Rud'. Japan. J. Appl. Phys., **30**, 512 (1994).

Редактор Л.В. Шаронова

## Photovoltaic effect of a p-CulnSe $_2$ /green leaf heterocontact

V.Yu. Rud', '), Yu.V. Rud', V.Kh. Shpunt

A.F. loffe Physicotechnical Institute, Russian Academy of Sciences
194021 St. Petersburg, Russia
<sup>1)</sup> State Technical University,
195251 St. Petersburg, Russia

**Abstract** A review is given on fabrications and investigations of photosensitive p-CuInSe<sub>2</sub>/green leaf structures. Some pecularities of this heterocontact are discussed. Their optical and photoelectrical properties in linearly polarized light have been considered. The effect of optical anisotropy of CuInSe<sub>2</sub> single crystals on the photosensitivity of the type structures was analyzed. The ways of further investigation of the photoconversion of this contact are suggested.