Исследование структуры края валентной зоны кристаллов Cd_{1-x}Mn_xS при помощи магнитооптических измерений

© В.Г. Абрамишвили, А.В. Комаров, С.М. Рябченко, Ю.Г. Семенов*

Институт физики Национальной академии наук Украины,

252650 Киев, Украина

* Институт физики полупроводников Национальной академии наук Украины,

252650 Киев, Украина

(Получена 29 февраля 1996 г. Принята к печати в марте 1996 г.)

Проведены магнитооптические исследования кристаллов $\operatorname{Cd}_{1-x}\operatorname{Mn}_x S$ с концентрацией магнитной компоненты $x_1 = 0.0056, x_2 = 0.0013, x_3 = 0.0002$ при T = 2 К в магнитном поле $H \leq 3.5$ Т для $\mathbf{H} \perp \mathbf{c}$ и $\mathbf{H} \parallel \mathbf{c}$, где \mathbf{c} — гексагональная ось кристалла. Впервые удалось надежно зафиксировать спиновое расщепление спектров экситонного отражения *B*-экситонного перехода благодаря использованию поперечной геометрии эксперимента $\mathbf{H} \perp \mathbf{c}$. На основании данных, полученных как при $\mathbf{H} \perp \mathbf{c}$, так и при $\mathbf{H} \parallel \mathbf{c}$, найдены параметры кристаллического поля и спин-орбитального взаимодействия $\Delta_1, \Delta_2, \Delta_3$ и обменные константы J_e, J_h кристаллов $\operatorname{Cd}_{1-x}\operatorname{Mn}_x S$, обеспечивающие наилучшее описание эксперимента в приближении среднего обменного поля. Проведенный анализ показал, что для всего ряда исследованных кристаллов $\operatorname{Cd}_{1-x}\operatorname{Mn}_x S$ основные качественные особенности наблюдаемых спектров отражения могут быть описаны только исходя из условия ($\Delta_1 - \Delta_2$) < 0.

Введение

Исследования гигантских спиновых расщеплений (ГСР) экситонных спектров отражения в кристаллах $Cd_{1-x}Mn_xS$ показали [1–5] ряд особенностей ГСР этого соединения в сравнении с другими $A_{1-x}^{II}Mn_xB^{VI}$. Наиболее широко обсуждавшейся является зависимость константы обменного взаимодействия (OB) — J_h -носителей валентной зоны (дырок) с ионами Mn^{2+} от содержания магнитных ионов x [3].

Вместе с тем, начиная с первых экспериментов [1,2], отмечались трудности в одновременном описании магнитополевых расщеплений A и B экситонных полос отражения при использовании принятых большинством исследователей представлений о параметрах кристаллического поля и спин-орбитального взаимодействия, формирующих структуру края валентной зоны кристаллов CdS.

Начиная с работ [6,7], велась острая дискуссия, для случая CdS, о генезисе подзон A, B и C, расположенных в порядке убывания энергии и отвечающих симметрии Γ_9 , Γ_7 и Γ_7 соответственно. Очевидно (см. рис. 33 в монографии [8]), что подзона Г₉ и одна из подзон Г7 происходят от спин-орбитального расщепления зоны Γ_5 , в то время как вторая из подзон Г₇ происходит от отщепленной кристаллическим полем подзоны Г₇. Дискуссия велась о том, к каким из подзон B и C относятся эти две подзоны Γ_7 разного генезиса. Например, для CdSe подзоны A и C связываются со спин-орбитальным расщеплением Γ_5 , а подзона В — с Г₁. Подобная схема предлагалась для CdS Томасом и Хопфилдом (TX) [7]. Схема, при которой подзона B приписывается Γ_5 , а подзона C — Γ_1 , предлагалась Бирманом (Б) [6].

После экспериментов [9] по изучению влияния внешних деформаций на положения экситонных

спектров в CdS и их интерпретации на основе схемы Бирмана большинство исследователей стало отдавать предпочтение этой схеме генезиса валентных подзон в CdS [1,4,8].

В базисе волновых функций X, Y, Z для валентных электронов группу уровней A, B и C описывает гамильтониан (см., например, [10])

$$H = \Delta_1 L_z^2 + 2\Delta_2 L_z S_z + 2\Delta_3 (L_x S_x + L_y S_y), \qquad (1)$$

где **L** и **S** — операторы орбитального момента (L = 1)и спина (S = 1/2) соответственно, Δ_1 — параметр кристаллического поля, Δ_2 и Δ_3 — параметры анизотропного спин-орбитального взаимодействия, ось *Z* совпадает с гексагональной осью кристалла **с**.

Решение гамильтониана (1) для состояний B и C в базисных функциях, соответствующих Γ_5 и Γ_1 , запишутся в виде

$$|B^{\pm}\rangle = \sqrt{(1+\xi_0)/2} \ |\Gamma_5^{\pm}\rangle \mp \sqrt{(1-\xi_0)/2} \ |\Gamma_1^{\pm}\rangle,$$
$$|C^{\pm}\rangle = \pm \sqrt{(1-\xi_0)/2} \ |\Gamma_5^{\pm}\rangle + \sqrt{(1+\xi_0)/2} \ |\Gamma_1^{\pm}\rangle, \quad (2)$$

где в обозначениях функций B и C символы Γ_5 , Γ_1 относятся к описанию орбитальных частей соответствующих функций, а символы \pm — к описанию двукратного вырождения (по спину) соответствующих состояний.

Величина ξ_0 связана с параметрами $\Delta_1, \Delta_2, \Delta_3$:

$$\xi_0 = (\Delta_1 - \Delta_2)/\omega_0, \qquad (3)$$

где $\omega_0 = \sqrt{(\Delta_1 - \Delta_2)^2 + 8\Delta_3^2}.$

Как видно, состояния B и C являются смесью Γ_5 и Γ_1 , а вопрос о предпочтительности их отнесения к той или иной схеме сводится к оценке знака $(\Delta_1 - \Delta_2)$. Любому экспериментально установленному значению $p = (E_A - E_B)/(E_A - E_C)$, где $E_{A,B,C}$ —

энергии потолков соответствующих подзон, отвечают два различных значения $q = (\Delta_1 - \Delta_2)/(\Delta_1 + \Delta_2)$ даже в приближении $\Delta_2 = \Delta_3$. Для $\Delta_2 \neq \Delta_3$ задача еще сложнее.

Эксперименты по влиянию внешних деформаций на положения A, B и C экситонов [9] не дают качественного ответа о знаке $(\Delta_1 - \Delta_2)$, а их количественная интерпретация позволила бы сделать надежный вывод об этом только при известных с достаточной точностью значениях констант деформационного потенциала. При ограниченной точности знания этих констант (±20%) возможность неоднозначности выбора знака ($\Delta_1 - \Delta_2$) остается.

Вместе с тем сопоставления магнитополевых расщеплений подзон A и B содержат качественную разницу между случаями $\Delta_1 > \Delta_2$ и $\Delta_1 < \Delta_2$ и дают необходимое дополнительное уравнение для определения Δ_1 , Δ_2 и Δ_3 в случае $\Delta_2 \neq \Delta_3$, что отмечалось в [1]. Магнитополевые расщепления подзон B и C (с точностью до подмешивания A к B и C) одинаковы по величине и противоположны по знаку.

В данной работе предприняты измерения магнитополевых расщеплений экситонных спектров отражения в кристаллах $Cd_{1-x}Mn_xS$ с существенно различающимися концентрациями ионов Mn, причем для преодоления ранее отмечавшихся трудностей интерпретации магнитополевых расщеплений экситона *В* измерения были предприняты не только при направлении магнитного поля **H** \parallel **c**, но и впервые для **H** \perp **c**.

Из анализа проведенных экспериментов, как это будет показано далее, следует выбор в пользу схемы TX, связанной с $(\Delta_1 - \Delta_2) < 0$ для исследованных кристаллов Cd_{1-x}Mn_xS. Получены данные о зависимости Δ_1 , Δ_2 , Δ_3 от x. Одновременно получен неожиданный результат на кристалле с наименьшей концентрацией x, выращенном из газовой фазы. Магнитополевые расщепления в нем оказались аномально малы, что противоречит ранее установленной [3,12] тенденции роста $|J_h|$ с уменьшением концентрации Mn в твердом растворе.

Эксперимент

Спектры отражения света в области A, B и Cэкситонов кристаллов $Cd_{1-x}Mn_xS$ с содержанием Mn $x_1 = 0.0056$, $x_2 = 0.0013$ и $x_3 = 0.0002$ исследованы при температуре T = 2 K в магнитных полях $H \leq 3.5 T$ при $H \parallel c$ и $H \perp c$. Значения x измерялись методом рентгеновского микроанализа и дополнительно проверялись по сравнительной интегральной интенсивности спектров электронного парамагнитного резонанса (ЭПР) ионов Mn^{2+} . Кристаллы с $x = x_1$, x_2 выращивались в Институте физики твердого тела РАН (г.Черноголовка) методом Бриджмена из расплава, а кристалл с $x = x_3$ — из газовой фазы в Институте физики полупроводников

Рис. 1. Спектр отражения в кристалле $Cd_{1-x}Mn_xS$ с $x_1 = 0.0056$ при $\mathbf{H} \perp \mathbf{c}, T = 2$ К. Кривые 1, 3 — в поле H = 0; 2, 4, 5 — при H = 30 кЭ; 1, 2 — соответствуют измерениям в поляризации $\mathbf{E} \parallel \mathbf{c} \parallel \mathbf{z}, \mathbf{k} \parallel \mathbf{H}, \mathbf{E} \parallel \mathbf{H}; 3, 4$ в поляризации $\mathbf{E} \perp \mathbf{c}, \mathbf{k} \parallel \mathbf{H}, \mathbf{E} \perp \mathbf{H}; 5$ — в поляризации $\mathbf{E} \perp \mathbf{c}, \mathbf{k} \perp \mathbf{H}, \mathbf{E} \parallel \mathbf{H}.$

НАН Украины (г.Киев). Оптические измерения проводились на двойном решеточном спектрофотометре ДФС-12 с линейной дисперсией 5 Å/мм.

На рис. 1 приведены примеры спектров отражения A и B экситонов для образца с $x = x_1$ при H = 0(кривые 1, 3 для поляризаций $\mathbf{E} \parallel \mathbf{c}$ и $\mathbf{E} \perp \mathbf{c}$ соответственно) и в поле H = 3 Т, поперечном оси кристалла \mathbf{c} ($\mathbf{H} \perp \mathbf{c}$); кривая 2 соответствует $\mathbf{E} \parallel \mathbf{c}$, $\mathbf{k} \parallel \mathbf{H}, \mathbf{E} \perp \mathbf{H}$; кривая $4 - \mathbf{E} \perp \mathbf{c}, \mathbf{k} \parallel \mathbf{H},$ $\mathbf{E} \perp \mathbf{H}$; кривая $5 - \mathbf{E} \perp \mathbf{c}, \mathbf{k} \perp \mathbf{H}, \mathbf{E} \parallel \mathbf{H}$. Здесь \mathbf{E} и \mathbf{k} означают электрический и волновой векторы световой волны.

Записи спектров, подобные приведенным, были получены для образцов с $x = x_1$, x_2 при различных фиксированных значениях $0 < H \leq 3.5$ Т. Положения точек перегиба экситонных линий отражения были использованы для построения магнитополевых зависимостей энергий и расщеплений экситонных зон. Аналогичным образом для образцов с $x = x_1, x_2$ регистрировалась магнитополевые зависимости спектров для $\mathbf{H} \parallel \mathbf{c}$ с той разницей, что для $\mathbf{k} \parallel \mathbf{H}$ здесь использовался циркулярно поляризованный свет с поляризациями σ^+ и σ^- . Для образца с $x = x_3$ заметное влияние магнитного поля проявилось только в области A экситонов. Обработка этих спектров выполнялась с учетом рекомендаций работы [13]. Измерения для $x = x_3$ проводились только при $\mathbf{H} \parallel \mathbf{c}$.

Для всех исследованных кристаллов были зафиксированы линии отражения в области C экситонов, что позволило найти $E_A - E_C$, $E_B - E_C$ для них. В то же время магнитополевых расщеплений для C экситона наблюдать не удалось на фоне ширины линий. Значения $E_B - E_C$ при H = 0 учитывались далее при подгонке эксперимента к расчету. Эти значения были для $x = x_1$, x_2 , x_3 равными 67, 60, 60 мэВ. Результаты измерений для x_1 и x_2 при **H** \parallel **с** и **H** \perp **с** подвергались совместной обработке по уравнениям работ [10,11,14], определяющим расщепления *A* и *B* экситонов в зависимости от действующих на электрон и дырку обменных полей G_e и G_h :

$$G_{e(h)} = J_{e(h)} x \langle S_z \rangle. \tag{4}$$

Здесь $\langle S_z \rangle$ — термодинамически среднее значение проекции спина ионов Mn²⁺ на ось z, совпадающую с направлением внешнего магнитного поля **H**; J_e и J_h — значения констант обменного взаимодействия электрона и дырки с ионами Mn. Величина $\langle S_z \rangle$ связана с величинами Н и Т функцией Бриллюэна для S = 5/2. Прямое действие магнитного поля на спины электрона и дырки было существенным на фоне обменных полей только для $x = x_3$. Для его описания использовались значения разности дфакторов электрона и дырки $(g_e - g_h) = 0.63$, взятые из работы [15]. Параметрами, которые подбирались из условий наилучшего соответствия расчетных и экспериментальных данных, были $\eta = J_h/J_e, \Delta_1, \Delta_2,$ Δ_3 . Кроме того, предпринималась попытка учесть анизотропию обменного взаимодействия дырок с ионами Mn, аналогично тому, как это было сделано в работе [4] (для **H** \perp **c**). Следует отметить, что большие экспериментальные погрешности и ширины

Рис. 2. Зависимость энергий спиновых компонент A и B экситонов от параметра обменного взаимодействия G_h в кристалле $Cd_{1-x}Mn_xS$ с $x_1 = 0.0056$ для $\mathbf{H} \perp \mathbf{c}$ и при T = 2 К. Кривые — расчет с параметрами подгонки, представленными в табл. 1, точки — эксперимент: переходы для кривых 1-4 разрешены в поляризации $\mathbf{E} \parallel \mathbf{c}$, $\mathbf{k} \parallel \mathbf{H}, \mathbf{E} \perp \mathbf{H}$, кружки — экспериментальные данные для этой поляризации; для кривых 1, 2, 6, 8 в поляризации — $\mathbf{E} \perp \mathbf{c}, \mathbf{k} \parallel \mathbf{H}, \mathbf{E} \perp \mathbf{H}$ — квадраты; для кривых 3, 4, 5, 7 в поляризации — $\mathbf{E} \perp \mathbf{c}, \mathbf{k} \perp \mathbf{H}, \mathbf{E} \parallel \mathbf{H}$ — треугольники.

Рис. 3. Зависимость энергий спиновых компонент A и B экситонов от параметра обменного взаимодействия G_h для $\mathbf{H} \parallel \mathbf{c}$ при T = 2 К в кристаллах $\mathrm{Cd}_{1-x}\mathrm{Mn}_x\mathrm{S}$: $a = x_1 = 0.0056$; $b = x_2 = 0.0013$. Точки — эксперимент: светлые кружки — σ^- , темные кружки — σ^+ , поляризация ($\mathbf{E} \perp \mathbf{H}$); квадраты — π -поляризация ($\mathbf{E} \parallel \mathbf{H}$). Кривые — расчет с параметрами подгонки, приведенные в табл. 1: $1 = \sigma^-$, $2 = \sigma^+$, $3 = \pi$ -поляризация.

наблюдаемых линий экситонного отражения ограничивали возможность наилучшего подбора. Для $\mathbf{H} \perp \mathbf{c}$ предсказываемые расчетом близко расположенные линии, разрешенные в одной и той же поляризации, как правило, экспериментально не разрешались и для сопоставления с экспериментом учитывались расчетные вероятности переходов в различных, одновременно разрешенных поляризациях, а также ширины наблюдаемых совокупных линий отражения.

x	$\Delta_1,$ мэВ	$\Delta_2,$ мэ ${ m B}$	$\Delta_3,$ мэ ${ m B}$	$J_h,$ э B	$J_e, \mathrm{f sB}$
$x_1 = 0.0056$ $x_2 = 0.0013$ $x_3 = 0.0002$	25 ± 1 23 ± 1 16 ± 2	30 ± 3 27 \pm 2 25 \pm 2	24 ± 2 21 ± 1 21 ± 1	$egin{array}{c} -2.82\pm0.2\ -4.0\ \pm0.3\ -0.7\ \pm0.3 \end{array}$	$egin{array}{c} 0.23 \pm 0.02 \ 0.30 \pm 0.02 \ 0.21 \pm 0.02 \end{array}$

Таблица 1. Зонные параметры и обменные константы $Cd_{1-x}Mn_xS$, полученные в результате численной подгонки рассчитанных энергий и наблюдаемых на эксперименте точек перегиба экситонных спектров отражения

Следует отметить, что положение линии отражения B экситона в H = 0 различается в поляризациях $\mathbf{E} \parallel \mathbf{c}$ и $\mathbf{E} \perp \mathbf{c}$ на величину 0.8 мэВ. Это различие не описывается моделью, использованной для расчета. Оно может быть связано с внутриэкситонным электронно-дырочным обменным взаимодействием [2,16], которое нами для упрощения задачи во внимание не принималось. Необходимо также отметить, что в силу отмеченных особенностей достигалось не полное соответствие экспериментальных результатов с расчетными, а скорее непротиворечивость сопоставления расчета с экспериментом в пределах имеющихся погрешностей.

Подбор параметров $\eta = J_h/J_e$ и Δ_1 , Δ_2 , Δ_3 осуществлялся в результате подгонки измеренных зависимостей от магнитного поля положений точек перегиба спектров экситонного отражения к рассчитанным кривым. Для удобства зависимости от магнитного поля трансформировались в зависимости от G_h при избранном подгоночном параметре η , которые вначале согласовывались с наблюдаемыми величинами расщепления линии отражения А экситона для Н || с в соответствующем кристалле, а дальше осуществлялось варьирование параметров Δ_1 , Δ_2 , Δ_3 . Оптимальные с точки зрения соответствия расчета эксперименту графики подобных зависимостей приведены на рис. 2, 3. В табл. 1 даны значения параметров, соответствующие расчетным кривым на рис. 2,3. При подборе Δ_1 , Δ_2 , Δ_3 соблюдалось также требование правильного описания положения C экситона при H = 0.

Следует отметить, что наиболее сильным качественным аргументом для отдания предпочтения значениям $\Delta_1 < \Delta_2$ являются результаты по расщеплению *B* экситона в геометрии **H** || **c** (рис. 3), а именно: 1) отсутствие видимого расщепления между компонентами σ^+ и σ^- , наблюдаемое в кристаллах с $x = x_1, x_2$; 2) такое смещение одной наблюдаемой π -компоненты в кристалле с $x = x_2$, что она оказывается внешней по отношению к нерасщепленным σ^+ и σ^- ; 3) такое взаимное расположение компонент σ^+ и σ^- , наблюдавшееся в работе [4] для x = 0.014, при котором энергия компоненты σ^+ меньше энергии компоненты σ^- . Указанные особенности спиновых расщеплений *B* экситона в магнитном поле могут реализоваться только при знаке разности $\Delta_1 - \Delta_2 < 0$.

Обсуждение результатов

В табл. 1 приведены параметры валентной зоны Δ_1 , Δ_2, Δ_3 , которые наилучшим образом описывают расщепления между компонентами A, B и C экситонного спектра при H = 0 и дают необходимое соответствие экспериментальных расщеплений А и В экситонов в магнитном поле. В связи с отличием указанных параметров валентной зоны кристаллов Cd_{1-x}Mn_xS от используемых в литературе, естественным является вопрос о возможности описания экспериментов [9] по одноосным деформациям в CdS, исходя из полученных нами зонных параметров. Анализ данного вопроса проведен нами на основе данных для кристалла $x = x_3$. Для этой цели мы использовали процедуру численной диагонализации матрицы деформации, аналогичную примененной в [9]. В результате, используя величины $\Delta_1, \Delta_2, \Delta_3$ для $x = x_3$ из табл. 1, удалось полностью описать смещения энергий А и В экситонов для всех использованных в [9] направлений приложенных деформций при этих значениях параметров также хорошо, как и при использованных в [9], за счет незначительного изменения констант деформационного потенциала. Необходимые для такого согласования значения констант деформационного потенциала C_i^* приведены в табл. 2. Там же для сравнения приведены соответствующие значения C_i из работы [9]. Как видно, в пределах допустимых погрешностей для этих констант оба набора значений приемлемо близки.

Согласно приведенным в табл. 1 данным, в кристаллах $Cd_{1-x}Mn_xS$ наблюдается также зависимость параметров валентной зоны Δ_i от содержания магнитной компоненты x. Наиболее ярко этот эффект выражен в сравнительно резком увеличении

Таблица 2. Параметры деформационного потенциала, полученные в результате численной подгонки к приведенным в работе [9] данным по барическим сдвигам экситонных спектров отражения

i	1	2	3	4	5	6
$C_{i}^{*}, $ эВ $C_{i}, $ эВ	$-2.7 \\ -2.8$	$-3.8 \\ -4.5$	$-1.1 \\ -1.3$	$2.6 \\ 2.9$	-1.3 -1.5	$1.2 \\ 1.2$

Примечание. Расчет экситонных спектров проводился при помощи диагонализации матрицы гамильтониана с использованием зонных параметров Δ_i и C_i из работы [9], либо Δ_i из табл. 1 и C_i^* .

(на 5 мэВ) константы кристаллического поля Δ_1 в интервале $x_3 < x < x_2$. При этом составу с x_3 отвечает значение Δ_1 , которое в схеме ТХ должно было бы быть выбрано и для чистого CdS, а для кристалла с $x = x_1$ величина Δ_1 возрастает, как и в кристалле с x = 0.014 [4]. Такая зависимость могла бы быть следствием эффекта носитель-ионного обменного взаимодействия биквадратичного по спину магнитного иона и эффективного спина дырки при его учете в высших порядках теории возмущений [16]. Вместе с тем в рамках полученных данных не наблюдается постоянства возрастания Δ_1 с ростом x, что вызывает трудности в непосредственном применении теории [16] к данным результатам.

Константа обменного взаимодействия J_h , приведенная в табл. 1 для $x = x_1$, хорошо согласуется с полученными ранее значениями для этого состава [2,3,5,17]; для $x = x_2$ она уточнена по сравнению с [1,3,5]. При этом тенденция в возрастании J_h с уменьшением x, отмеченная в работе [3] и получившая объяснение в теории [18], подтверждается для данных двух концентраций. Неожиданным оказался результат для x_3 , при котором величина J_h оказалась не только не возросшей, а существенно меньшей, чем в кристаллах с $x = x_2, x_3$. Это нарушает установленную ранее тенденцию в зависимости J_h от х, хотя для столь малых x, как x₃, исследования ранее не проводились. Отметим, что в другом сульфидном соединении Zn_{1-x}Mn_xS также зафиксирована зависимость $J_h(x)$ [19], несколько отличающаяся от установленного ранее для случая $Cd_{1-x}Mn_xS$. В [19] наблюдался рост величины J_h в интервале значений x = 0.001 - 0.01. Возможно, что для объяснения обнаружившихся для случая $x = x_3$ новых особенностей в зависимости $J_h = J_h(x)$ потребуется дальнейшая модификация теории [18]. Альтернативой остаются возможные особенности легирования кристалла ионами Mn при выращивании из газовой фазы.

Заключение

В настоящей работе получено, что валентные подзоны A и C кристалла $\operatorname{Cd}_{1-x}\operatorname{Mn}_x\operatorname{S}$ для всех исследованных x формируются из зоны Γ_5 в результате ее спин-орбитального расщепления, как это предполагалось в схеме генезиса зон Томаса и Хопфилда [7]. Поскольку в большинстве работ оптические свойства CdS описывались исходя из набора параметров Δ_i , отвечающих схеме расщепления Бирмана [6], интерпретация ряда полученных ранее результатов, возможно, потребует пересмотра.

Получены данные об изменении характера зависимости $|J_h(x)|$ в области предельно малых x. В этой же области обнаружена существенная зависимость от x параметра кристаллического поля Δ_1 . Для привлечения теоретических моделей, таким образом, представляется важным дальнейшее исследование этих эффектов в интервале концентраций магнитной компоненты 0.0002 < x < 0.0015.

Авторы благодарны С.И. Губареву за предоставленные кристаллы с x_1 и x_2 и Г.С. Пекарю за выращенный кристалл с x_3 .

Список литературы

- [1] С.И. Губарев. ЖЭТФ, 80, 1174 (1981).
- [2] В.Г. Абрамишвили, С.И. Губарев, А.В. Комаров, С.М. Рябченко. ФТТ, 26 1095 (1984).
- [3] С.И. Губарев, М.Г. Тяжлов, Письма ЖЭТФ, 44, 385 (1986).
- [4] M. Nawrocki, J.P. Lascaray et al. MRS Symposia Proc., 89, 65 (1987).
- [5] В.Г. Абрамишвили, А.В. Комаров, Ю.Г. Семенов, С.М. Рябченко. Тез. докл. 1 нац. конф. "Дефекты в полупроводниках" (С.-Петербург, 1992) с. 57.
- [6] J.L. Birman. Phys. Rev., **114**, 1490 (1959).
- [7] D.G. Thomas, J.J. Hopfield. Phys. Rev., **116**, 573 (1959);
 Phys. Rev., **119**, 570 (1960).
- [8] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках (М., Наука, 1972).
- [9] D.W. Langer, R.N. Euwema, K. Era, T. Koda. Phys. Rev. B, 2, 4005 (1970).
- [10] С.М. Рябченко, Ю.Г. Семенов. В сб.: Спектроскопия кристаллов (Л., Наука, 1983) с. 206.
- [11] А.В. Комаров, С.М. Рябченко, Ю.Г. Семенов, В.Д. Шанина, Н.И. Витриховский. ЖЭТФ, 79, 1554 (1980).
- [12] Yu.G. Semenov, V.A. Stephanovich. Semicond. Sci. Technol., 7, 364 (1992).
- [13] К.Д. Дмитренко, Л.В. Тараненко, С.Г. Шевель, А.В. Маринченко. ФТП, **19**, 788 (1985).
- [14] S.I. Gubarev. Phys. St. Sol. (b), **134**, 211 (1986).
- [15] J.J. Hopfield, D.G. Thomas. Phys. Rev., **122**, 35 (1961).
- [16] S.M. Ryabchenko, Yu.G. Semenov, O.V. Terletskii. Phys. St. Sol. (b), 144, 661 (1987).
- [17] S.I. Gubarev. J. Luminesc. **52**, 193 (1992).
- [18] C. Benoit a la Guillaume, D. Scalbert, T. Dietl. Phys. Rev. B, 46, 9853 (1992).
- [19] В.Г. Абрамишвили, С.М. Рябченко, О.В. Терлецкий. ФТТ. **31**, 33 (1989).

Редактор В.В. Чалдышев

Magnetooptical study of $Cd_{1-x}Mn_xS$ crystals as a tool in analyzing band edge structure

V.G. Abramishvili, A.V. Komarov, S.M. Ryabchenko, Yu.G. Semenov*

Institute of Physics, Ukrainian Academy of Sciences, 252650 Kiev, the Ukraine

* Institute of Semiconductor Physics, Ukrainian Academy of Sciences, 252650 Kiev, the Ukraine **Abstract** Magnetoreflectivity spectra of $\operatorname{Cd}_{1-x}\operatorname{Mn}_x \operatorname{S}$ crystals with x = 0.056, 0.0013, 0.0002 at T = 2 K in magnetic field H up to 3.5 T for both $\mathbf{H} \perp \mathbf{c}$ and $\mathbf{H} \parallel \mathbf{c}$, c being the hexagonal crystal axis, have been studied. Reliable spin splitting B-exciton line has been first found in $\operatorname{Cd}_{1-x}\operatorname{Mn}_x \operatorname{S}$ using $\mathbf{H} \perp \mathbf{c}$ geometry. Crystal-field and spin-orbital splitting parameters Δ_1 , Δ_2 , Δ_3 as wll as exchange constants J_e , J_h were obtained from the comparison of experimental data (for both $\mathbf{H} \perp \mathbf{c}$ and $\mathbf{H} \parallel \mathbf{c}$ geometries) with theoretical results for the mean exchange field approximation. From the analysis follows that the main spectra peculiarities can be described only on condition that $\Delta_1 - \Delta_2 < 0$ for all $\operatorname{Cd}_{1-x}\operatorname{Mn}_x \operatorname{S}$ crystals studied.