Эффекты зарядовой нестабильности в системе карбид кремния-диэлектрик

© В.А. Карачинов

Новгородский государственный университет, 173003 Новгород, Россия

(Получена 14 декабря 1995 г. Принята к печати 16 января 1996 г.)

Методами неразрушающего контроля по шумовым характеристикам, фольт-фарадных характеристик исследовано влияние лазерного излучения на электрическую прочность и характеристики границы раздела системы карбид кремния-диэлектрик. Выявлены эффекты управления фиксированным зарядом в слое диэлектрика и изменения распределения плотности поверхностных состояний. Обсуждаются возможные механизмы наблюдаемых явлений.

Введение

Известно, что воздействие лазерного излучения на такие достаточно изученные полупроводники как кремний, германий, арсенид галлия при реализации процессов резки (скрайбирования), отжига имплантированных слоев, испарения и др. может приводит к различным изменениям кристаллической структуры, электрофизических и оптических свойств [1,2]. Особую значимость лазерные технологии приобретают применительно к высокотемпературным полупроводникам, в том числе и к карбиду кремния.

Так, для ряда технических применений карбида кремния определенный интерес представляют исследования, связанные с воздействием лазерного излучения на слоистые структуры, в частности структуры SiC-диэлектрик, обладающие не только интересными свойствами, но и являющиеся типичными в планарной технологии полупроводниковых приборов [3–6].

В настоящей работе приводятся результаты экспериментальных исследований влияния миллисекундных импульсов лазерного излучения на свойства диэлектрических пленок и границы раздела структур диэлектрик-полупроводник на основе 6*H*-SiC.

Методика исследований

Пленки двуокиси кремния толщиной $d \approx 0.2$ мкм наносились на грань (0001) C подложек карбида кремния методами: термическим окислением SiC в сухом и влажном кислороде SiO_{2t}; окислением cuлана кислородом SiO_{2s}. Пленки нитрида кремния $d \approx 0.2$ мкм были получены методом реактивного катодного распыления кремния в атмосфере азота. В качестве подложек использовались монокристаллы 6H-SiC с концентрацией нескомпенсированных доноров $N_d - N_a = (1-3) \cdot 10^{18} \, \mathrm{cm}^{-3}$ и плотностью дислокаций $N_D = 10^3 - 10^4 \, \mathrm{cm}^{-2}$. Перед нанесением диэлектрических пленок подложки подвергались химическому травлению в расплаве КОН при температуре $T = 450^{\circ}$ С в течение 20 мин. Дополнительно часть подложек травилась в плазме аргона.

Структуры SiC-диэлектрик облучались импульсами лазера ($\lambda = 1.06 \,\mathrm{mkm}, \, \tau = 0.8 \cdot 10^{-4} \,\mathrm{c}, \,$ плотность энергии в импульсе составляла $E_p = 0.3 - 20 \,\mathrm{Дж/cm^2}$).

Электрическая прочность диэлектрических пленок оценивалась методами неразрушающего контроля по шумовым характеристикам [7]. Свойства границы раздела SiC-диэлектрик исследовались методом высокочастотных вольт-фарадных характеристик [8].

Результаты исследований и их обсуждение

Использование неразрушающего режима измерения позволило провести сопоставление электрической прочности исходных и облученных диэлектрических пленок. Измерения проказали, что электрическая прочность необлученных пленок SiO_{2t} на SiCв 3 раза ниже, чем пленок SiO_{2s}. Очевидно, этот факт обусловлен дефектами исходной структуры подложек, а также наличием несвязанного углерода на границе раздела $SiC-SiO_{2t}$, образующегося в процессе окисления карбида кремния [9]. Облучение исходных структур диэлектрик-карбид кремния в интервале значений энергии в импульсе $\sim (0.3-7) \, \text{Дж}/\text{см}^2$ приводило к увеличению электрической прочности пленок SiO_{2t}, SiO_{2s} и Si₃N₄. Характер зависимости E_s от плотности энергии в импульсе получается сложный (рис. 1). Можно лишь предположить, что возрастание Е_s связано в основном с изменениями свойств границы раздела. В частности, для SiO_{2t} — с уменьшением концентрации неоднородно распределенного углерода за счет диффузии к поверхности, образования связей Si-O-C и протекания химических реакций, результатом которых является синтез СО из накопленного в процессе окисления границей раздела СО₂ [10].

Уменьшение E_s , по всей видимости, объясняется чисто механическими нарушениями, возникающими при больших значениях плотности энергии в импульсе, а также неоднородностью распределения энергии в пятне.

Результаты исследования характеристик границы раздела диэлектрик-SiC указывают на видимую кор-

Рис. 1. Экспериментальные зависимости электрической прочности диэлектрических пленок от плотности энергии лазерного излучения. 1 — химическое + ионно-плазменное (Ar) травление подложки; 2 — химическое травление подложки в расплаве КОН. a) SiC-SiO_{2t}, b) SiC-SiO_{2s}, c) SiC-Si₃N₄.

реляцию между изменениями E_s и зарядового состояния. Так, для структур SiC–SiO_{2t}, начиная с энергий $E_p = 4 \, \text{Дж/см}^2$ и выше, напряжение плоских зон, а следовательно, и фиксированный заряд в окисле уменьшаются (рис. 2). Следует отметить, что во всем исследованном интервале энергий лазерного излучения наклон вольт-фарадных характеристик изменялся слабо. Однако в интервале значений $E_p = (3-5) \, \text{Дж/см}^2$ на характеристике появляется ступенька, а при энергии $E_p = 5.98 \, \text{Дж/см}^2$ изменяется обход петли гистерезиса (рис. 3). В этом случае гистерезис обусловлен захватом электронов ловушка-

Рис. 2. Зависимость напряжения плоских зон системы $SiC-SiO_{2t}$ от плотности энергии лазерного излучения (эксперимент).

Рис. 3. Высокочастотные вольт-фарадные характеристики системы SiC-SiO_{2t} (эксперимент). 1 — после лазерного облучения $E_p = (3-5) \, \text{Дж/см}^2$, 2 — исходная.

ми, находящимися в слое окисла вблизи поверхности карбида кремния, а начиная с энергии $E_p = 6 \, \mathrm{Дж} / \mathrm{cm}^2$ обход петли гистерезиса возвращается к исходному и формируется преимущественно дрейфом ионов в пленке двуокиси кремния [8]. Появление ступеньки на высокочастотной вольт-фарадной характеристике, очевидно, связано с нарушениями кристаллической структуры на границе раздела SiC-SiO_{2t} при воздействии лазерного излучения. Это приводит к возникновению распределения плотности поверхностных состояний в виде моноэнергетического поверхностного уровня. Присутствие такого уровня изменяет зависимость поверхностного потенциала от напряжения смещения структуры SiC-SiO_{2t}, и его экранирующее действие приводит к сдвигу лишь отдельных участков вольт-фарадной характеристики по сравнению с исходной. Можно предположить, что в данном случае имеем моноэнергетический поверхностный уровень в виде ловушки, которая обменивается зарядом с SiC. При этом максимальная плотность поверхностных состояний, рассчитанная согласно [8], составила $N_{ss} =$ $2.5 \cdot 10^{11} \, \mathrm{sB \cdot cm^{-2}}.$

Заключение

1. Система карбид кремния-диэлектрик подвержена воздействию лазерного излучения, что приводит к существенным перестройкам как в диэлектрических пленках, так и в области границы раздела.

2. Лазерным излучением можно создавать эффекты управления фиксированным зарядом в слое диэлектрика и изменять характер распределения поверхностных состояний.

Список литературы

- А.В. Марсанов. Итоги науки и техники. Электроника, 13, 73 (1981).
- [2] А.Г. Григорьянц. Основы лазерной обработки материалов (М., Машиностроение, 1989).
- [3] I. Lundstrom. Phys. Sor., 18, 424 (1989).
- [4] В.А. Карачинов. Тез. докл. межд. сем. "Полупроводниковый карбид кремния и приборы на его основе" (Новгород, 1995) с. 72.

- [5] Э.Е. Виолин, О.Н. Воронько, Ф. Нойберт, Е.Н. Потапов. ФТП, 18, 954 (1984).
- [6] П.А. Иванов, В.Н. Пантелеев, Т.П. Самсонова, В.Е. Челноков. ФТП, **29**, 271 (1995)
- [7] Л.П. Карба, Л.Н. Крутяков. Электрон. техн., Сер. 8, 3, 68 (1978).
- [8] В.М. Колешко, Г.Д. Каплан. Обзоры по электрон. техн. Сер. 3. Микроэлектроника, 2, 79 (1977).
- [9] R.W. Kee, K.M. Geib, C.W. Wilmsen. J. Vac. Sci. Techn., 15, 1520 (1978).
- [10] A. Suzuki, H. Matsuami, T. Tanaka. J. Electrochem. Soc., 125, 1896 (1978).

Редактор В.В. Чалдышев

Effects of charge instability in a silicon carbide–dielectric system

V.A. Karachinov

Novgorod State University, 173003 Novgorod, Russia

Abstract The influence of laser radiation on the electrical strenght and characteristics of the silicon carbide–dielectric system boundary is studied by method of the nondestructive control of noise characteristics and voltage-capacity characteristics.

Effects of monitoring the fixed charge in the dielectric layer and changes in the distribution of surface states density are revealed.