Об электрических и фотоэлектрических свойствах структуры $Pd-p^0$ -Si-p-Si с разупорядоченным промежуточным p^0 -слоем

© С.В. Слободчиков, Х.М. Салихов, Е.В. Руссу, М.М. Мередов, А.И. Язлыева

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 31 января 1996 г. Принята к печати 5 февраля 1996 г.)

Проведены измерения электрических характеристик и фотоэдс на диодных структурах $Pd-p^0$ -Si-p-Si с разупорядоченным (пористым) p^0 -слоем Si. Предполагаемый механизм токопереноса — двойная инжекция электронов и дырок в p^0 -слой. В атмосфере водорода фотоэдс возрастает в 20 раз; обратный ток падает в 3-4 раза. Рост фотоэдс связан с ростом барьера Шоттки $Pd-p^0$ -Si, а падение темнового тока — с изменением коэффициента инжекции электронов. Релаксация фотоэдс после выключения потока H_2 имеет два временных интервала длительностью порядка 130 и 420 с. Показано, что эти особенности релаксации связаны с гетерогенностью структуры p^0 -слоя, включающего в себя как неанодизированные участки, так и пористые. Эти области структуры содержат свой набор глубоких центров захвата и рекомбинации, и этот набор может изменяться под действием водорода, создающего индуцированные "временные" глубокие уровни.

В последние годы большое количество работ посвящено технологии получения, исследованиям микроструктуры, физико-химических свойств и особенно изучению фото- и электролюминесценции пористого кремния и диодных структур на его основе. Обзор ряда работ по этим проблемам с соответствующими ссылками дан в [1]. Вместе с тем следует отметить, что данные по электрическим и фотоэлектрическим характеристикам диодных структур на основе пористого кремния довольно скудны и включены в виде небольших замечаний или вспомогательных фрагментов в работах по фото- или электролюминесценции. Обычно получаемые образцы пористого кремния методом электрохимического травления (с различными вариациями) в сущности приводят к созданию разупорядоченных слоев на подложке — монокристаллическом Si. Состав этих слоев, их морфология и другие свойства зависят как от режима травления, так и от свойств подложки.

В настоящей работе приведены некоторые результаты исследований электрических и фотоэлектрических свойств диодных структур Pd-*p*⁰-Si-*p*-Si с промежуточным разупорядоченным *p*⁰-слоем кремния и изменения их в атмосфере водорода.

1. Экспериментальные образцы

Диодные структуры и разупорядоченные слои создавались на основе *p*-Si с $\rho = 1$ Ом · см и ориентацией (100). Монокристаллические подложки толщиной порядка 500 мкм до электрохимического травления очищались химически, промывались и высушивались. Омические контакты создавались на тыльной стороне подложки нанесением тонкой пленки Al. Электрохимическое травление проводилось в растворе HF с плотностью тока 25 мA/см^2 и продолжительностью 5 мин. На полученные разупорядоченные слои с пористостью, величину которой было трудно определить, наносился Pd. Эта операция проводилась напылением в вакууме 10^{-5} мм рт.ст. и толщина слоя паладия была примерно 400 Å. На созданных образцах проводились измерения вольт-амперных и вольтемкостных характеристик, фотоэдс (или фототока) и изучалось влияние импульсного воздействия водорода на величину темнового тока и фотоэдс.

2. Результаты измерений и их обсуждение

На рис. 1 представлены характерные вольтамперные зависимости исследованных структур при прямом ("+" на *p*-Si) и обратном смещениях. Прямой ток изменяется с напряжением как $I \sim V^2$, обратный — $I \sim V^{1.3}$. На основе измерения емкости вычисленная толщина разупорядоченного слоя оказалась порядка 1 мкм. Из измеренных вольт-амперных зависимостей следует, что барьерный контакт Шоттки не играет определяющей роли в механизме токопереноса через диодную структуру при прямом смещении и оказывает существенное влияние при обратной полярности. Основной вклад в механизм токопрохождения при прямом смещении, на наш взгляд, вносит двойная инжекция дырок из *р*-области подложки и электронов из палладиевого контакта в разупорядоченной пористый слой *p*⁰-Si. Найденная зависимость прямого тока от напряжения справедлива при условии, что длины диффузного смещения дырок и электронов $L_{n,p}$ меньше толщины W слоя p^0 -Si, в результате получаем, что $L_{n,p} < 1$ мкм. Приближенная оценка усредненной подвижности при высоких уровнях инжекции, когда влиянием центров захвата можно пренебречь, по соотношению для плотности тока

$$J({
m A/cm^2}) = 10^{-13} V^2 \mu_p arepsilon / W^3$$

при $V~=~1\,\mathrm{B},~arepsilon~=~10$ и $W~=~1\,\mathrm{мкм}$ дает значение $\mu_p \simeq 0.6 \,\mathrm{cm}^2/\mathrm{B}\cdot\mathrm{c}$, т.е. очень низкую величину. Роль палладиевого барьерного контакта становится определяющей при исследовании фотоэдс или фототока (без смещения). В работе [2] нами изучались электрические и фотоэлектрические свойства структур Pd–SiO₂–p(n)-Si и изменение их в атмосфере водорода. Было установлено, что в структурах на основе *p*-Si под импульсным воздействием потока H₂ наблюдается рост фотоэдс почти на 2 порядка величины, который мы связали с ростом высоты барьера Шоттки. Аналогичный эффект увеличения фотоэдс наблюдался и в диодных структурах, изученных в данной работе (рис. 2), хотя и меньший по величине: фотосигнал возрастает примерно в 20 раз. Очевидно, что причина и этого роста та же, что и в диодах на монокристаллической подложке p-Si. Разница, однако, наблюдается в механизме релаксации фотоэдс (или фототока) после выключения импульса потока H₂. В структурах с разупорядоченным (пористым) слоем наблюдается два участка релаксации: первый (рис. 2, участок I) лежит в интервале времени 50 ÷ 180 с и приблизительно совпадает со временем релаксации на структурах Pd–SiO₂–*p*-Si [2], а второй (участок II) охватывает интервал 180÷600 с. Во втором интервале минимальная величина фотоэдс $V_{\rm ph}^{\rm min}$ в 5 раз ниже исходного значения $V_{\rm ph}^{\rm st}$ (до запуска потока ${\rm H_2}$) и достигает последнего в конце наблюдаемого временного интервала. Характерно, что изменение (уменьшение) прямого темнового тока составляет всего $10 \div 20\%$ со временем релаксации порядка 180 с, а обратный ток падает в 3 ÷ 4 раза со временем релаксации порядка 13 мин (рис. 3). Отметим, что возрастание фотоэдс и падение темнового тока при импульсном запуске Н₂ практически безынерционно. Мы уже отмечали в [2], что времена релаксации фотоответа в интервале 50 ÷ 180 с связаны с влиянием центров захва-

Рис. 1. Вольт-амперные характеристики структуры Pd-*p*⁰-Si-*p*-Si с разупорядоченным *p*⁰-слоем: 1 — прямая ветвь ("+" на *p*-Si), 2 — обратная ветвь.

Рис. 2. Изменение фотоэдс структуры $Pd-p^0$ -Si-p-Si под импульсным воздействием потока водорода. I — область релаксации фотоэдс после выключения потока H₂; II — область релаксации к исходному значению. Освещение светом с длиной волны $\lambda = 1.05$ мкм.

та, инициированных диффузией водорода. Наличие разупорядоченного слоя Si, прежде всего связанного с образованием пор, вносит дополнительные центры, более глубокие и с большей их концентрацией. На наш взгляд, общий механизм генерации фотоэдс и фототока и изменение их под влиянием водорода можно представить следующим образом. Как видно из некоторых исследований [3,4], разупорядоченный слой кремния может иметь гетерогенную структуру. В работе [4] были обнаружены иглообразные неанодизированные участки, направленные перпендикулярно поверхности слоя, а также беспорядочное распределение пустот. Структура разупорядоченного пористого слоя включает, как предполагается в работе [5], слой крупных продольных пор (диаметром порядка 0.5 мкм), перпендикулярных поверхности, и наноструктурные слои. Считается далее, что в процессе анодизации поры почти полностью заполняются водородом, причем возможно образование кластеров Si с Н различного состава компонент [6]. Атомы водорода, хемисорбированные на пористых поверхностях, производят сильные искажения решетки. В связи с этими физико-химическими и технологическими данными мы полагаем, что спектры уровней захвата и рекомбинации в слоях истощения барьера Шоттки в области пор и в неанодизированной области будут существенно различаться. Фототок диода Шоттки, как известно, определяется суммой двух основных компонент

$$I_{\rm ph} = I_d + I_b,\tag{1}$$

Рис. 3. Релаксация обратного тока структуры $Pd-p^0$ -Si-p-Si после выключения потока H_2 ($I^{H_2} \rightarrow I^{st}$).

где ток I_d области истощения равен

$$I_d = qT(\lambda)F(\lambda)[1 - \exp(-\alpha W_1)], \qquad (2)$$

а ток базовой области при условии, что толщина ее больше диффузионной длины L_n , составляет

$$I_b = \left[\frac{qF(\lambda)\alpha L_n}{(\alpha L_n + 1)}\right]T(\lambda)\exp(-\alpha W_1).$$
 (3)

Здесь $T(\lambda)$ — коэффициент пропускания пленки Pd, $F(\lambda)$ — плотность падающего потока квантов, *α* — коэффициент поглощения, *W*₁ — толщина слоя истощения. Выражения (2) и (3) справедливы без учета промежуточных состояний и оксидных слоев. В слое истощения в неанодизированных участках, очевидно, набор уровней захвата, включая состояния, связанные с дефектами, будет существенно меньше, чем для случая пористых участков, имеющих высокую плотность дефектов и химических примесей, связанных с хемисорбцией водорода. В этой связи как подвижность носителей тока, так и их время жизни в первой области будут выше, чем во второй и, соответственно, $L_{n1} > L_{n2}$. Сделанная выше грубая оценка подвижности отражает, вероятно, усредненную величину по всему разупорядоченному слою. Изменение фотоэдс структуры и ее полная релаксация (рис. 2) под воздействием импульса потока H_2 определяется вкладом двух указанных областей и, вероятно, протекает следующим образом. При запуске Н₂ возрастает высота барьера в обеих областях и, следовательно, увеличивается фотоэдс благодаря снижению темнового термоэлектронного и генерационно-рекомбинационного токов. Величина фотоэдс определяется как $V_{\rm ph} \simeq I_{\rm ph} R_0$, где R_0 дифференциальное сопротивление при нулевом смещении. В изученных структурах, очевидно, основной вклад в V_{ph} вносит первая область, так как для нее в соответствии с (2) и (3) фототоки больше. К тому же для генерационно-рекомбинационного тока

$$R_0 S = 2\tau_r / q n_i W_1, \tag{4}$$

где S — активная площадь структуры, а n_i — собственная концентрация носителей в Si, и естественно считать время жизни τ_r при рекомбинации в области истощения W_1 в первой области выше, чем во второй, т.е. $R_0^{\rm I} > R_0^{\rm II}$. Релаксационный спад фотоэдс после выключения импульса потока H₂ отражает это неравенство вкладов в фототок или фотоэдс от обеих областей диодной структуры. В интервале времени 50 ÷ 180 с спад фотоэдс обусловлен в основном вкладом первой области, а более длинновременная релаксация — преобладающим влиянием второй.

Аналитически спад фотоэдс на первом участке зависимости от времени может быть приближенно представлен $V_{\rm ph} \sim \exp(-t)$; возрастание же фотоэдс на втором участке от $V_{\rm ph}^{\rm min}$ до исходной величины (до запуска H_2) аппроксимируется зависимостью $V_{\rm ph}$ \sim $(a_1 + a_2 t)$ с коэффициентом $a_2 \simeq 0.03$ мкB/с. Основной причиной релаксационного изменения фотоэдс в обеих областях барьера, т.е. в неанодизированной и пористой, следует считать изменение времени жизни фотоносителей, связанное с захватом и рекомбинацией их на глубоких уровнях, индуцированных диффундировавшими атомами водорода. До запуска Н₂ времена жизни в обеих областях барьера можно в общем виде представить как $1/ au = \sum\limits_i 1/ au_i$, где au_i время жизни, соответствующее *i*-уровню рекомбинации. Число уровней и их энергетическое положение в запрещенной зоне могут быть неодинаковы. Естественно, что и роль каждого уровня в рекомбинации будет неодинакова. После запуска ${\rm H}_2$ в обеих областях индуцируются новые уровни из-за искажений решетки уже не только хемисорбированными, но и диффундировавшими извне атомами водорода; при этом возможно образование кластеров Si-H_x, связей Si-O и т.д. В этом случае можно записать

$$1/\tau = \sum_{i} 1/\tau_i + \sum_{j} 1/\tau_j,$$
 (5)

где вторая сумма включает времена жизни, связанные с вновь созданными уровнями. В отличие от первой суммы составляющие τ_j вносят вклад в τ лишь на время существования этих уровней. После выключения импульса потока H₂ идут процессы распада кластеров, уменьшения искажений решетки, выделения атомов водорода в той или иной форме, в том числе и в виде каких-либо соединений. Дифференциальное сопротивление (4) с учетом "постоянных" и "вре́менных" глубоких центров можно записать

$$R_0 S = 2 \Big/ q n_i W_1 \Big(\sum_i v_{\rm th} \sigma_i N_i + \sum_j v_{\rm th} \sigma_j N_j \Big), \quad (6)$$

где $v_{\rm th}$, $\sigma_{i,j}$, $N_{i,j}$ — тепловая скорость носителей, их сечения захвата и плотности рекомбинационных центров соответственно.

Динамика процесса релаксации фотоэдс под действием импульса потока водорода представляется

Рис. 4. Изменение фототока структуры $Pd-p^0$ -Si-p-Si в зависимости от магнитного поля; $-\Delta I_{ph} = I_{ph}^H - I_{ph}^0, I_{ph}^H - \phi$ ототок в магнитном поле H.

следующим образом. За время действия импульса потока H₂ идет диффузия атомов водорода в обеих областях, неанодизированной и пористой, что индуцирует появление новых временных глубоких уровней. После выключения H₂ происходит релаксация фотоэдс, определяемая процессами захвата и рекомбинации на новых уровнях, причем падение фотоответа обусловлено как уменьшением фототока из-за активного захвата неосновных носителей (электронов) на новые уровни, так и снижением дифференциального сопротивления согласно (6).

В интервале 50 ÷ 180 с процесс определяется преимущественно неанодизированной областью структуры и идет приблизительно экспоненциально со временем. Релаксация при t > 180 с уже определяется глубокими центрами в пористой области, из которых вероятность освобождения захваченных электронов $\gamma = \nu_0 \exp(-E_j/kT)$ существенно меньше (ν_0 — частота выброса). Вследствие этого на кривой релаксации появляется область $V_{\rm ph} < V_{\rm ph}^{\rm st}$. Аннигиляция временных глубоких уровней в этой области со скоростью порядка a_2t возвращает величину фотоэдс к ее исходному значению.

В связи с изложенным более ясным становится отмеченное ранее влияние водорода на прямую и обратную ветви вольт-амперной зависимости. При прямом смещении действие Н2 оказывается менее заметным вследствие того, что основной компонентой тока через структуру является ток дырок I_n и уменьшение тока электронов в *p*⁰-области из-за их захвата на индуцированные водородом глубокие уровни мало изменяет общий ток двойной инжекции $I = I_p + I_n$. При обратном смещении коэффициенты инжекции дырок $I_p/(I_p + I_n) \neq 1$ и электронов $I_n/(I_p+I_n) \neq 1$; ток электронов может превышать ток дырок, и изменение полного тока в атмосфере Н₂ оказывается более значительным, причем время релаксации оказывается равным 12 ÷ 13 мин, что сопоставимо с соответствующим временем релаксации фотоэдс.

Было проверено влияние магнитного поля на фототок (рис. 4). Изменение фототока в этом случае, вероятно, также свидетельствует в пользу гетерогенности разупорядоченного слоя с упомянутыми иглообразными образованиями. Относительно небольшое падение фототока при малых полях сменяется затем крутым спадом. Такое изменение фототока можно связать с падением коэффициента собирания фотоносителей у барьера Шоттки из-за уменьшения L_n при отклонении электронов в иглах к стенкам пор, где идет интенсивный захват и рекомбинация.

Проведенные измерения электрических и фотоэлектрических характеристик диодных структур с разупорядоченным промежуточным слоем показали, что как механизм прохождения темнового тока, так и изменение фотоэдс (фототока) определяются двумя областями структуры, неанодизированной и пористой, причем каждая из них имеет свой набор глубоких центров захвата и рекомбинации, и этот набор может изменяться под действием водорода, создающего индуцированные временные глубокие уровни.

Авторы выражают искреннюю благодарность А.М. Мариновой за помощь в изоготовлении экспериментальных образцов.

Список литературы

- [1] B. Hamilton. Semicond. Sci. Techn., 10, 1187 (1995).
- [2] Г.Г. Ковалевская, М.М. Мамедов, Е.В. Руссу, Х.М. Салихов, С.В. Слободчиков. ЖТФ, 63, 185 (1993).
- [3] K.C. Mandal, F. Ozanam, J.-N. Chazalviel. Appl. Phys. Lett., 57, 2788 (1990).
- [4] H. Sugiyama, O. Nittono. J. Cryst. Growth, 103, 156 (1990).
- [5] F. Kozlowski, W. Lang. J. Appl. Phys., 72, 5401 (1992).
- [6] T. Ito, T. Yasumatsu, H. Watabe, A. Hiraki. Japan. J. Appl. Phys., 29, L201 (1990).

Редактор Т.А. Полянская

About electrical and photoelectrical properties of a Pd– p^0 -p–Si structure with disordered intermediate p^0 -layer

S.V. Slobodchikov, Kh.M. Salichov, E.V. Russu, M.M. Meredov, A.I. Yazlieva

A.F. loffe Physicotechnical Institute Russian Academy of Sciences, 194021 St.Petersburg, Russia