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Abstract. Stability of the ocean of magnetic neutron stars is considered. We argued that the ocean is unstable if the temperature
varies along the surface. The instability grows on a time scale ∼0.1−100 s depending on the lengthscale of perturbations and
generates a weak turbulence. Turbulence can be responsible for mixing between the surface and deep ocean layers and can
enhance heat transport in the surface region.
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1. Introduction

The structure of the surface layer in neutron stars (NSs) is of
general interest to studies of thermal radiation and NS cool-
ing. The matter is likely in a melted state in the surface layer
and forms a liquid ocean. The depth of this ocean depends cru-
cially on the temperature and chemical composition and varies
within a wide range. Crystallization of liquid occurs when the
ion coupling parameter Γ = Z2e2/(akBT ) reaches the critical
value Γ = Γm ≈ 170 (Slattery et al. 1980); a = (3/4πni)1/3,
ni and Z are the number density and charge of ions; T is the
temperature, and kB is the Boltzmann constant. Then, the crys-
tallization temperature is

Tm =
Z2e2

akBΓm
≈ 1.3 × 105Z5/3x1/3

(
170
Γm

)
K, (1)

where x = Zρ/A × 106 g/cm3, A is the atomic number of ions.
In NSs with the surface temperature ≥106 that are of interest to
studies of thermal radiation, crystallization occurs at the den-
sity ρ ≥ 109 g/cm3 if Z ≤ 26. The depth from the surface, h, is
related to ρ by x2/3 ≈ h(h + 2H)/H2 (Urpin & Yakovlev 1979)
where H = Zmec2/Agmp and g is the gravity. For the “stan-
dard” NS, H ∼ 10 m, and the density 109 g/cm3 corresponds to
the depth ∼100 m.

Hydrodynamic phenomena in the ocean play an important
role in the magnetic and thermal evolution, generation of quasi-
periodic oscillations (Bildsten & Cutler 1995; Bildsten et al.
1996) and r-modes (Yoshida & Lee 2001, 2002), and in mix-
ing. The spectral modelling is usually based on the assump-
tion that NS atmospheres are hydrogen (see, e.g., Zavlin &
Pavlov 2002). The ocean, however, cannot be entirely hydro-
gen. Hydrodynamic motions can mix the ocean and transport
heavy elements to the surface. Recently, Sanwal et al. (2002)
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reported the first detection of absorbtion features in an iso-
lated NS, 1E 1207.4-5209. Their analysis demonstrates that the
atmosphere cannot be hydrogen. Applying the atomic model
for magnetized NS atmospheres, Hailey & Mori (2002) found
that the features can be associated to He-like oxygen or neon.
The presence of heavy elements in the atmosphere can natu-
rally be explained by mixing with deep ocean layers. Despite
the lines of heavy elements have not been observed yet in most
isolated NSs these features can be a general phenomenon if
mixing is efficient.

Mixing is oftenly atributed to hydrodynamic instabilities,
e.g., convection. The standard convection arises if ∇T is su-
peradiabatic and occurs only in the atmosphere of hot NSs
with a weak magnetic field (Miralles et al. 1997). Likely, con-
vection is not the only instability that occurs in NSs. Stability
properties of the ocean can be complicated because of a strong
magnetic field, B ≥ 1012 G, and the temperature gradient that
is not parallel to g. Generally, anisotropy caused by the mag-
netic field can be the reason of diffusive instabilities (see, e.g.,
Balbus 2000). Note that the magnetic field in NSs can have a
spot-like structure with a small scale field being stronger than
the mean field (Urpin & Gil 2003) that provides an additional
complexity. In this paper, we consider stability of the NS ocean
and argue that non-parallel ∇T and g should be the reason of
instability that can mix the surface layers.

2. The dispersion equation

Consider a linear stability of a magnetic NS ocean assuming
that the temperature departs from the spherical symmetry in the
unperturbed state. We do not specify the mechanism responsi-
ble for these departures but it can be, for example, anisotropic
heat transport in the magnetic field (see, e.g., Schaaf 1990;
Potekhin & Yakovlev 2001) or heating due to relativistic
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particles created in the pulsar’s acceleration zones and bom-
barding the NS surface (Ruderman & Sutherland 1975). Since
the gravity, g, is approximately radial in the ocean, ∇T can
generally be non-parallel to g. In this Letter, we neglect the
influence of a compositional gradient on stability and use the
Boussinesq approximation since the growth time of instabil-
ity is longer than the period of sound waves (see, e.g., Landau
& Lifshitz 1959). Then, the equations governing the velocity,
magnetic field and thermal balance are

u̇ + (u · ∇)u = −∇p
ρ
+ g +

1
4πρ

(∇ × B) × B, (2)

∇ · (ρu) = 0, (3)

Ḃ − ∇ × (u × B) = −∇ × [η̂ · (∇ × B)], (4)

∇ · B = 0, (5)

Ṫ + u · (∆∇T ) = ∇ · (χ̂ · ∇T ), (6)

where ∆∇T = ∇T − ∇adT is a difference of the real and adia-
batic temperature gradients; χ̂ = κ̂/ρcp, η̂ = c2R̂/4π; κ̂ and R̂
are tensors of the thermal conductivity and electrical resistiv-
ity, and cp is the specific heat at p = const. Following tensor
operations on Eqs. (4) and (6), we have

χ̂ · ∇T = χ‖∇‖T + χ⊥∇⊥T + χ∧b × ∇T,

where χ‖,⊥ are the tensor components along and across B, χ∧ is
the Hall component; b = B/B. An analogous expression can
be written for η̂. Note that η‖ = η⊥ = η∧/α where α is the Hall
parameter that generally can be large,

α = ΩBeτ ≈ 9.9 × 103B13

ZΛ(1 + x2/3)
, (7)

ΩBe and τ are the electron gyrofrequency and relaxation
time; B13 = B/1013G, Λ ≈ 2 is the Coulomb logarithm.

We neglect viscosity in the momentum Eq. (2). Generally,
both electrons and ions contribute to the shear viscosity. The
ion viscosity is dominating in a low density region but is
smaller than η and χ. The electron viscosity is important in
deep layers (Itoh et al. 1987). The ratio of the electron viscos-
ity and magnetic diffusivity is

νe
η‖
=

2.2 × 102

AZΛ
x5/3

(1 + x2/3)2
· (8)

Viscosity becomes comparable to η‖ only if ρ ≥
108−109 g/cm3, and the ocean consists of light elements.
Therefore, neglecting viscosity in Eq. (2) is qualitatively
justified.

The unperturbed ocean is in hydrostatic equilibrium,

∇p
ρ
= G = g +

1
4πρ

(∇ × B) × B. (9)

Taking the curl of this equation, we have

∇ρ × G = − 1
4π
∇ × [(∇ × B) × B] . (10)

Hence, ∇ρ and ∇T have components perpendicular to G only
if B is not force-free in the ocean.

Equations governing small perturbations can be obtained
by linearization of Eqs. (2)−(6). The linearized equations
should be complemented by the equation of state linking per-
turbations of the pressure, density, and temperature. Since in
the Boussinesq approximation perturbations of the pressure are
small, the density perturbation, ρ1, can be expressed in terms
of the temperature perturbation, T1, by ρ1 ≈ −ρβT1/T where
β = −(∂ lnρ/∂ ln T )p is the coefficient of thermal expansion.

We consider short-wavelength perturbations with spatial
and temporal dependence exp(γt − ik · r) where k is the wave-
vector. Then, the dispersion equation corresponding to the lin-
earized Eqs. (2)−(6) reads

γ5 + a4γ
4 + a3γ

3 + a2γ
2 + a1γ + a0 = 0 , (11)

where

a4 = ωχ + 2ωη,

a3 = ω
2
η + ω

2
∧ + 2ωηωχ + 2ω2

A − ω2
g,

a2 = ωχ
(
ω2
η + ω

2
∧ + 2ω2

A

)
+ 2ωη

(
ω2

A − ω2
g

)
,

a1 = ω
4
A + 2ωηωχω2

A − ω2
g

(
ω2
η + ω

2
∧ + ω

2
A

)
,

a0 = ω
2
A

(
ωχω

2
A − ωηω2

g − ωηω2
gH

)
,

and characteristic frequencies are given by

ωη = η‖k2 , ωχ = χ⊥k2 + (χ‖ − χ⊥)(k · b)2 ,

ω∧ = η∧k(k · b) , ωA = (k · B)/
√

4πρ ,

ω2
g =
β

T
D · ∆∇T , ω2

gH =
αβ(k · b)

k2T
∆∇T · (k × D),

where D = G−k(k ·G)/k2 is the component of G perpendicular
to k.

3. Criterion and growth rate of instability

Equation (11) has roots with Reγ > 0 (unstable modes) if one
of the following inequalities is fulfilled

a4 < 0 , a0 < 0 , A1 ≡ a4a3 − a2 < 0 ,

A2 ≡ a2(a4a3 − a2) − a4(a4a1 − a0) < 0 ,

A3 ≡ (a4a1 − a0) [a2 (a4a3 − a2) − a4 (a4a1 − a0)]

−a0(a4a3 − a2)2 < 0 , (12)

(e.g., Aleksandrov et al. 1985). Note that despite Eq. (11) has
five roots and there are five Routh-Hurwitz criteria of insta-
bility (12), there is no one-to-one correspondence between the
roots and criteria. It is often the case that when one criterion
is satisfied, some others are as well, and in reality only one (or
few) criterion is (are) involved.

We consider only the criterion A3 < 0 that is most rele-
vant to the NS oceans. For a very short wavelength, λ = 2π/k,
dissipative frequences ωη, ω∧, and ωχ become larger than dy-
namical frequences ωA, ωg, and ωgH, and neither of the condi-
tions (12) is satisfied. Therefore, we consider the most interest-
ing case min(ωA, ωg, ωgH) > max(ωη, ω∧, ωχ). This inequality
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is usually equivalent to ωgH > ωχ since ωgH is the smallest dy-
namical frequency and ωχ is the largest dissipative frequency.
We can rewrite the condition ωgH > ωχ as

λ > λc =
2πχ1/2

‖
(αβδg)1/4

(
∆∇T

T

)−1/4

t

∼ 0.1Z1/2T 1/2
7 x1/6

[
δ(1 + x2/3)

]1/4
cm, (13)

where T7 = T/107 K and δ = kt/k, the subscript “t” denotes the
component perpendicular to G; (∆∇T/T )t ≡ 1/L with L being
the temperature lengthscale along the surface, L = 106 cm in
Eq. (13); we assume that ρ < 1010 g/cm3 in the ocean and use
the electron thermal conductivity by Urpin & Yakovlev (1980).

Under Eq. (13), the criterion A3 < 0 is equivalent

(ω2
gH − ω2

g)
[
ω2

gH + ω
2
g(1 − ζ)

]
> 0, (14)

where ζ = ωχω2
g/ωηω

2
A. If ω2

gH = 0 then Eq. (14) reduces to
the well known criterion of oscillatory convection

ωχω
2
g > ωηω

2
A (15)

(see, e.g., Chandrasekhar 1961). However, usially ζ < 1 in
the surface layer of NSs, and Eq. (15) is not fulfilled except
very hot stars with a low magnetic field (Miralles et al. 1997).
If |ζ | � 1, then Eq. (14) simplifies,

| ω2
gH |> | ω2

g | . (16)

This criterion as well as the condition (14) can always be satis-
fied by a corresponding choice of k once (∆∇T )t � 0.

Introducing local coordinates with the z-axis antiparallel
to G and the x-axis aligned with kt, we have G = −Gez, k =
kxex + kzez; ex, ey, and ez are the unit vectors. Then, Eq. (16)
reads

α | k · b | | ∆∇Ty | > | kx∆∇Tz − kz∆∇Tx |, (17)

where ∆∇Tx,y,z are the corresponding components of ∆∇T . It
is seen that instability occurs only if k has a non-zero com-
ponent perpendicular to the plane (G,∆∇T ). Perturbations are
suppressed if k is parallel to this plane. Usually, the component
of ∆∇T parallel to the NS surface is relatively small compared
to the radial one. Then, Eq. (17) is fulfilled if∣∣∣∣∣kx

kz

∣∣∣∣∣ < α |bz∆∇Ty|
|∆∇Tz| , (18)

and only perturbations with |kz| � |kx| can be unstable.
Since ku = 0, this implies that the velocity of unstable pertur-
bations has a small vertical component and a large component
parallel to the surface.

The dispersion Eq. (11) can be solved by making use of the
perturbation method if min(ωA, ωg, ωgH) > max(ωη, ω∧, ωχ)
and Eq. (13) is satisfied. We can expand the growth rate as γ =
γ(0)+γ(1)+...where γ(0) and γ(1) are terms of the zeroth and first
order in dissipative frequencies, respectively. The correspond-
ing expansion should be made for the coefficients of Eq. (11)
as well. Generally, we can restrict ourselves in the linear terms
in dissipative frequencies. In the zeroth order when dissipation
is neglected, Eq. (11) reduces to a quadratic equation,

γ(0) 4 + γ(0) 2(2ω2
A − ω2

g) + ω2
A

(
ω2

A − ω2
g

)
= 0. (19)

This equation describes four modes with the frequencies

γ(0) 2
1,2 = −ω2

A, γ
(0) 2
3,4 = −ω2

A + ω
2
g. (20)

The fifth root of Eq. (11) vanishes in the zeroth order, γ(0)
5 = 0.

Usually, γ(0) 2 < 0 in NSs because the inequality ω2
g > ω

2
A re-

quires large∇T that does not exist in NSs. Therefore, instability
does not occur in the zeroth order.

The real parts of γ(1) that determine instability are

Re γ(1)
1,2 =

ωη

2ω2
g

(
ω2

gH − ω2
g

)
, (21)

Re γ(1)
3,4 = −

ωηω
2
A

2ω2
g

(
ω2

A − ω2
g

) [
ω2

gH + ω
2
g(1 − ζ)

]
, (22)

γ(1)
5 =

ωη
(
ω2

g + ω
2
gH

)
− ωχω2

A

ω2
A − ω2

g
· (23)

The modes 1−4 are oscillatory and can be unstable if the con-
dition (14) is satisfied. If

ω2
gH > ω

2
g and ω2

gH > ω
2
g(ζ − 1), (24)

then the modes 1, 2 are unstable but the modes 3, 4 are stable
if ω2

g > 0, and the modes 1, 2 are stable but the modes 3, 4 are
unstable if ω2

g < 0. On the contrary, if

ω2
gH < ω

2
g and ω2

gH < ω
2
g(ζ − 1), (25)

then the modes 1, 2 are stable whereas the modes 3 and 4
are unstable if ω2

g > 0, and the modes 1, 2 are unstable but
the modes 3, 4 are unstable if ω2

g < 0.
The fifth root corresponds to a non-oscillatory mode. The

condition of instability of this mode,

ωη(ω2
g + ω

2
gH) − ωχω2

A > 0, (26)

generalizes the Chandrasekhar criterion of convection for non-
parallel g and ∇T and is equivalent to a0 < 0.

4. Discussion

The NS oceans are always hydrodynamically unstable if T
varies over the surface. The growth rate of instability depends
on ∇T and λ and can vary within a wide range. If ω2

A � ω2
g

and ζ < 1, then the growth rate is

Re γ ≈ ± ωη
2ω2

g

(
ω2

gH ± ω2
g

)
. (27)

The growth rate is maximal if k lies in the plane perpendicu-
lar to the plane (G,∆∇T ). Then ∆∇Tx = 0 and, assuming that
Eq. (18) is fulfilled, we have from Eq. (27)

Re γ ∼ η‖k
2

2

αbz|∆∇Ty|
|∆∇Tz|

kz

kx
∼ 40k2 B13

x
H
L

∣∣∣∣∣ kz

kx

∣∣∣∣∣ s−1, (28)

where H = T/|∆∇Tz| ≈ 103 cm is the vertical lengthscale
of the temperature. The ratio kz/kx in Eq. (28) is maximal
if the wavelength of perturbations along the surface is large
(say, ∼0.01L) but the vertical wavelength is minimal. For such
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perturbations, |Hkz/Lkx| ∼ 0.01H/λz where λz is the vertical
wavelength and, hence,

Re γ ∼ 10−2 B13x−1 λ−3
z2 s−1, (29)

where λz2 = λz/102 cm. The growth rate increases with de-
creasing λz and reaches its maximum at λz ∼ λc. For example,
if λz ∼ 10 cm and B ∼ 1013 G then the growth time is ∼0.1 s in
the layer where ρ ∼ 106 g/cm3.

The main driving forces of instability are the Hall effect
and horizontal advection of heat and, as a result, the growth
rate (28) is proportional to the Hall conductivity, η∧ = η‖α,
and∇Ty. This point can be clarified by a simple qualitative con-
sideration. The amplitude of magnetic perturbations is changed
mainly by the Hall effect. For example, the amplitude B1y in-
creases after ∆t by

∆B1y

∆t
∼ η∧(kb)(k × B1)y ∼ η∧(kb)

k2

kx
B1z (30)

(we use the divergence-free condition (5) for B1); small
perturbations are marked by the subscript “1”. Since unsta-
ble perturbations are approximately Alfvenic in the ocean, the
components of velocity and magnetic field are related by B1z ∼
B1y(v1z/v1y). For the considered instability, perturbations of the
temperature are small, T1 ∝ (u1 · ∆∇T ) ≈ 0, then v1z/v1y ∼
∆∇Ty/∆∇Tz. Substituting these expressions into Eq. (30), we
obtain the growth rate (28).

The growth time of instability is relatively short and, likely,
it operates in a non-linear regime. We estimate the saturated
velocity using the mixing-length model (e.g., Schwarzschild
1958) that assumes that the turn-over time of turbulence
is of the order of the growth time of instability. Then,
the vertical turbulent velocity is approximately given by
vTz(λz) ∼ λz Re γ(λz) or

vTz ∼ B13x−1λ−2
z2 cm/s. (31)

Since the instability is anisotropic, the saturated turbulent ve-
locity should be anisotropic as well. From Eqs. (3) and (30),
we can estimate the turbulent velocity along the surface
as vTx ∼ vTz(λx/λz).

Turbulent motions can enhance transport in the ocean. The
coefficient of turbulent diffusion in the vertical direction is rel-
atively large,

νT ∼ vTzλz ∼ 102B13x−1 λ−1
z2 cm2/s. (32)

For example, νT ∼ 102 cm2/s if the characteristic vertical wave-
length is ∼1 m and B13 = x = 1. Such diffusion is sufficient to
mix the layer with the depth ∼10 m on a timescale ∼hours.
Turbulent diffusion can be compared to the gravitational sedi-
mentation in the ocean. The coefficient of interspecies diffusion
(Brown et al. 2002) reads in our notations

D ∼ 4 × 10−3

A0.5Z0.7Z0.3
2

T 1.2
7

x0.6
cm2 s−1, (33)

where Z2 is the charge of a trace component. This quantity
is usually much smaller than νT. The turbulent diffusivity is

also few orders of magnitude larger that the electron and ion
shear viscosities calculated by Itoh et al. (1987) except layers
with ρ ≥ 109 g/cm3.

Apart from transport of heavy elements to the surface, tur-
bulence can also enhance heat transport. The turbulent thermal
diffusivity is ∼νT, and the ratio of turbulent and electron ther-
mal diffusivities is
νT
χ‖
∼ B13T−1

7

(
1 + x2/3

)
x−1λ−1

z2 . (34)

Generally, these quantities can be comparable. Since∇T is sub-
adiabatic, turbulent motions increase the difference between
the surface and internal temperature. Turbulent transport along
the surface and vertically should be different for the considered
instability with more efficient diffusion along the surface. This
can reduce the surface temperature gradient and decrease the
contrast between the polar and equatorial temperature.

Note that the chemical stratification can influence the sta-
bility properties of the ocean as well. This influence is two-fold.
If stratification is spherical then it provides the stabilizing effect
increasing ω2

g (the Ledoux effect). However, if stratification is
non-spherical (for example, in accreting NSs) then it can cause
instability of the same nature as considered above but driven by
the surface chemical gradient.
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