

Contents lists available at ScienceDirect

# Atomic Data and Nuclear Data Tables

journal homepage: www.elsevier.com/locate/adt

# Radiative recombination rate coefficients for highly-charged tungsten ions

# M.B. Trzhaskovskaya<sup>a,\*</sup>, V.K. Nikulin<sup>b</sup>, R.E.H. Clark<sup>c</sup>

<sup>a</sup> Petersburg Nuclear Physics Institute, Theoretical Physics Division, Gatchina 188300, Russia <sup>b</sup> loffe Physical Technical Institute, St. Petersburg 194021, Russia

<sup>c</sup> Nuclear Data Section, International Atomic Energy Agency, Vienna A-1400, Austria

## ARTICLE INFO

Article history: Available online 7 October 2009

# ABSTRACT

Partial and total radiative recombination rate coefficients are presented for highly-charged ions of tungsten with closed shells,  $W^{28+}$ ,  $W^{38+}$ ,  $W^{46+}$ ,  $W^{56+}$ ,  $W^{64+}$ ,  $W^{70+}$ , and  $W^{72+}$ , as well as for the H-like ion  $W^{73+}$ and the bare nucleus  $W^{74+}$ . The temperature range  $10^3 - 10^{10}$  K is considered. Calculations have been performed in the framework of the fully relativistic Dirac–Fock treatment of photoionization and radiative recombination processes taking into account all significant multipoles of the radiation field. We assess the influence of multipole effects on recombination rate coefficients as compared with the commonly used dipole approximation. For the first time, we show that the relativistic Maxwell–Boltzmann distribution of continuum electrons should be used at high temperature. This decreases the rate coefficient significantly compared to the nonrelativistic distribution.

© 2009 Elsevier Inc. All rights reserved.

Atomic Data

Nuclear Data Table

<sup>\*</sup> Corresponding author. Tel.: +7 813 71 46096; fax: +7 813 71 31963. *E-mail address*: Trzhask@MT5605.spb.edu (M.B. Trzhaskovskaya).

#### Contents

|    | Introduction                                                            |    |
|----|-------------------------------------------------------------------------|----|
| 2. | Method of calculation                                                   | 3  |
| 3. | Results and discussion                                                  | 4  |
|    | 3.1. Relativistic factor for the radiative rate coefficient             | 4  |
|    | 3.2. Multipole effects                                                  | 4  |
|    | 3.3. Asymptotic values of photoionization cross sections at high energy | 5  |
|    | 3.4. Comparison with other calculations                                 |    |
|    | 3.5. Radiative rate coefficients for tungsten ions                      | 7  |
| 4. | Conclusions                                                             | 8  |
|    | Acknowledgments                                                         | 8  |
|    | Appendix A. Supplementary data                                          | 8  |
|    | References                                                              | 8  |
|    | Explanation of Table                                                    |    |
|    | 1. Radiative recombination rare coefficients                            | 10 |
|    |                                                                         |    |

### 1. Introduction

Radiative recombination rate coefficients along with photoionization and radiative recombination cross sections are required for estimates of ionization equilibria and thermal balance in terrestrial and astrophysical plasmas contaminated by various ions. In fusion reactors, impurity ions of heavy elements up to tungsten may be present. Data on highly-charged tungsten ions are important in the performance of future fusion devices developed, for example, in the framework of the Tungsten Program [1].

A number of calculations exist for photoionization cross sections (PCS) and radiative recombination cross sections (RRCS) as well as for radiative recombination rate coefficients for ions of elements with atomic number  $Z \leq 54$  [2–11]. However, there are few calculations of PCS and RRCS for ions as heavy as tungsten [10,11]. As to the recombination rate coefficients for tungsten ions, data for three ions obtained using an approximate theoretical method are presented in Ref. [5] at four values of temperature in the range  $1 \leq k_{\rm B}T \leq 30$  keV ( $k_{\rm B}$  is the Boltzmann constant and T is the temperature). Because tungsten impurities are deeply involved in fusion studies and atomic data on ionization-recombination coefficients are currently unavailable [1], we present the partial and total recombination rate coefficients for nine highly-charged ions of tungsten from the Pd-like ion  $W^{28+}$  to the bare nucleus  $W^{74+}$ . The wide range of temperatures  $0.09 \text{ eV} \leq k_{\text{B}}T \leq 900 \text{ keV}$  is considered. We have used a fully relativistic treatment of photoionization and radiative recombination processes. Electron wavefunctions were found in the framework of the Dirac-Fock (DF) method with proper consideration of the exchange interaction between electrons. All significant multipole orders of the radiation field were taken into account.

As is well known (see, for example, Refs. [11-14] and references therein), the multipole and relativistic effects are of great importance in consideration of photoionization and radiative recombination at high electron energies, especially for heavy and highly-charged ions. In particular, as has been noted in Ref. [11], the difference between the relativistic calculation of RRCS with regard to all multipoles and the nonrelativistic calculation within the dipole approximation for the 1*s*, 2*p*, and 3*d* shells of uranium is 10–18% even at electron kinetic energy as low as  $E_k = 10 \text{ eV}$ and may exceed an order of magnitude at  $E_k = 1000 \text{ keV}$ .

Nevertheless, the multipole and certain relativistic effects are usually neglected in consideration of photoionization and radiative recombination processes in plasmas. For example, in Ref. [7], the electric dipole approximation is used while the electron energy range up to 100 keV is considered. The electric dipole approximation is also adopted in a recent paper [8] where recombination rate coefficients for isoelectronic sequences to the Na-like one for Z = 1-30, 36, 42, and 54 are presented. The highest

electron energy under consideration is equal to 1.36  $Z^2$  keV, which is to say that for Z = 54,  $E_k \approx 4000$  keV. The widely used tables [2] of hydrogenic recombination rate coefficients were calculated within the nonrelativistic dipole approximation for temperatures up to  $T = \infty$ .

To find recombination rate coefficients for such high temperatures, it is necessary to have the RRCS or PCS values at very high energies up to several thousand keV. Usually, asymptotic values of PCS are used in the simple nonrelativistic form  $\sigma_{\rm ph}^{(i)} \propto k^{-(3.5+\ell_i)}$ ( $\sigma_{\rm ph}^{(i)}$  is the PCS for the *i*th shell, *k* is the photon energy, and  $\ell_i$  is the orbital momentum) [6,8]. However, as will be shown below, this asymptotic form is not adequate in the case of the relativistic PCS calculation including all multipoles.

As to relativistic effects, calculations [3,7,8] have been carried out using semi-relativistic corrections. However, in determining RRCS, the majority of calculations commonly use the nonrelativistic expression for the transformation coefficient between PCS and RRCS which may result in erroneous values of RRCS and recombination rate coefficients at high electron energies. We show here, for the first time, the relativistic correction factor to the expression for the recombination rate coefficient arising from treatment of the relativistic Maxwell–Boltzmann distribution of continuum electrons instead of the commonly adopted nonrelativistic one. The factor depends on temperature and may change the recombination rate coefficients by several multiples at high temperatures.

Given the aforesaid observations, it is important to assess the contribution of nondipole effects and the impact of the proper asymptotic behavior of the relativistic cross sections with regard to all multipoles as well as the specific relativistic effects in a calculation of recombination rate coefficients for various ions. In this paper, we consider the influence of the following effects on recombination rate coefficients and relevant cross sections: (i) the relativistic transformation coefficient between PCS and RRCS; (ii) the relativistic factor in the expression for the recombination rate coefficient; (iii) taking into account multipole effects; and (iv) the proper asymptotic behavior of the relativistic PCS with regard to all multipoles. These effects are shown to play an essential role in calculations of PCS and RRCS, and, ultimately, of recombination rate coefficients, altering the results considerably at high electron energies. Preliminary results concerning points (i)-(iii) were presented recently [9].

In Section 2, we present the expressions for PCS and RRCS as well as derive the relativistic correction factor for the recombination rate coefficient expression. In Section 3, we discuss the results obtained for ions of tungsten along with ions of other representative elements to demonstrate that our conclusions are generally applicable. We also compare our results with other calculations. Partial and total recombination rate coefficients for tungsten ions presented in Table 1 were calculated including the influence of these effects. The total rate coefficient is the sum of the partial ones over all atomic shells with principal quantum number  $n \leq 20$ . Partial recombination rate coefficients are given for shells with  $n \leq 12$  and orbital quantum number  $\ell \leq 6$  which contribute more than  $\sim$ 70% of a total rate coefficient.

### 2. Method of calculation

. .

The partial PCS in the *i*th subshell per one electron involved in the rate coefficient calculation can be written as

$$\begin{aligned} \sigma_{\rm ph}^{(i)} &= \frac{4\pi^2 \alpha}{\tilde{k}(2j_i+1)} \sum_L \sum_{\kappa} \left[ (2L+1) Q_{LL}^2(\kappa) + L Q_{L+1L}^2(\kappa) \right. \\ &+ (L+1) Q_{L-1L}^2(\kappa) - 2\sqrt{L(L+1)} Q_{L-1L}(\kappa) Q_{L+1L}(\kappa) \right]. \end{aligned}$$
(1)

We use relativistic units  $(\hbar = m_0 = c = 1)$  in Eqs. (1)–(5). Here  $\tilde{k} = k/m_0c^2$  is the photon energy,  $\alpha$  is the fine structure constant, *L* is the multipolarity of the radiation field, the relativistic quantum number  $\kappa = (\ell - j)(2j + 1)$ ,  $\ell$  and *j* are the orbital and total angular momenta of the electron, and  $Q_{AL}(\kappa)$  is the reduced matrix element which is written in the form

$$Q_{AL}(\kappa) = \left( [\bar{\ell}][\ell_i] / [A] \right)^{1/2} C^{A0}_{\bar{\ell}0\ell_i 0} \mathcal{A} \begin{pmatrix} \bar{\ell} & 1/2 & j \\ \ell_i & 1/2 & j_i \\ A & 1 & L \end{pmatrix} R_{1A} \\ + \left( [\ell][\bar{\ell}_i] / [A] \right)^{1/2} C^{A0}_{\ell 0\bar{\ell}_i 0} \mathcal{A} \begin{pmatrix} \ell & 1/2 & j \\ \bar{\ell}_i & 1/2 & j_i \\ A & 1 & L \end{pmatrix} R_{2A}.$$
(2)

Here  $\bar{\ell} = 2j - \ell$ ,  $C^{A0}_{\ell_1 0 \ell_2 0}$  is the Clebsch–Gordan coefficient, A is the recoupling coefficient for the four angular momenta, [a] denotes the expression (2a + 1), and  $R_{1A}$  and  $R_{2A}$  are the following radial integrals

$$R_{1A} = \int_0^\infty G_i(r) F(\tilde{E}_k, r) j_A(\tilde{k}r) dr,$$
  

$$R_{2A} = \int_0^\infty G(\tilde{E}_k, r) F_i(r) j_A(\tilde{k}r) dr.$$
(3)

In Eq. (3),  $j_A(kr)$  is the spherical Bessel function of the  $\Lambda$ th order, G and F are the large and small components of the Dirac electron wavefunction multiplied by r, and  $\tilde{E}_k = E_k/m_0c^2$  is the kinetic electron energy. In Eqs. (1)–(3), the subscript i is related to the bound electron while designations with no subscript are related to the continuum electron state. Electron wavefunctions are calculated by the DF method with inclusion of the exact exchange between bound electrons as well as between bound and free electrons [15]. The finite nuclear size is taken into account. Both bound and continuum wavefunctions are calculated in the self-consistent field of the corresponding ions with N + 1 and N electrons, respectively.

The subshell RRCS of the recombination process accompanied by the capture of an electron with energy  $\tilde{E}_k$  to the *i*th subshell of the ion with *N* electrons is expressed in terms of the corresponding PCS as follows.

$$\sigma_{\rm II}^{(i)} = Aq_i \sigma_{\rm ph}^{(i)},\tag{4}$$

where  $q_i$  is the number of vacancies in the *i*th subshell prior to recombination. The transformation coefficient *A* can be derived from the principle of detailed balance. The exact relativistic expression for the coefficient has the following form [11,14]

$$A_{\rm rel} = \frac{\tilde{k}^2}{2\tilde{E}_k + \tilde{E}_k^2}.$$
(5)

However, in the majority of calculations [5-10], the coefficient is used in the form

$$A = \frac{k^2}{2m_0 c^2 E_k},\tag{6}$$

which was obtained in the nonrelativistic approximation.

The difference between  $\sigma_{rr}^{(i)}$  obtained with Eqs. (5) and (6) depends on the electron energy  $E_k$  only and can be written as

$$\frac{A-A_{\rm rel}}{A_{\rm rel}} = \frac{E_k}{2m_0c^2}.\tag{7}$$

As is evident, the difference is equal to  $\sim 10\%$  at  $E_k = 100$  keV and reaches  $\sim 100\%$  at 1000 keV. Consequently, the relativistic transformation coefficient must be used in the RRCS calculation at high energies.

The relativistic recombination rate coefficient  $\alpha_{rel}^{(i)}(T)$  can be found using the thermal average over the fully relativistic RRCS, the continuum electron velocity being described by the relativistic Maxwell–Boltzmann distribution function f(E) normalized to unity as follows [16]

$$f(E)dE = \frac{E(E^2 - 1)^{1/2}}{\theta e^{1/\theta} K_2(1/\theta)} \times e^{-(E-1)/\theta} dE.$$
(8)

Here *E* is the total electron energy in units of  $m_0c^2$  including the rest energy and  $\theta = k_BT/m_0c^2$  is the characteristic dimensionless temperature. The function  $K_2$  denotes the modified Bessel function of the second order. Taking into account the relativistic distribution in the form of Eq. (8) and the transformation coefficient  $A_{rel}$ (Eq.(5)), we have for the relativistic radiative recombination rate coefficient

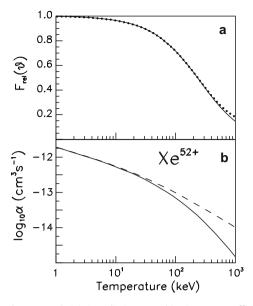
$$\alpha_{\rm rel}^{(i)}(T) = \langle \nu \sigma_{\rm rr}^{(i)} \rangle = F_{\rm rel}(\theta) \cdot \alpha^{(i)}(T).$$
(9)

Here v = (p/E)c is the electron velocity with the momentum  $p = \sqrt{E^2 - 1}$  and  $\alpha^{(i)}(T)$  is the usual recombination rate coefficient with nonrelativistic Maxwell–Boltzmann electron distribution which may be written as

$$\alpha^{(i)}(T) = (2/\pi)^{1/2} c^{-2} (m_0 k_{\rm B} T)^{-3/2} q_i \int_{\varepsilon_i}^{\infty} k^2 \sigma_{\rm ph}^{(i)}(k) e^{(\varepsilon_i - k)/(k_{\rm B} T)} \, dk, \quad (10)$$

where  $\varepsilon_i$  is the binding energy of the *i*th shell. Eq. (10) is equivalent to Eq. (2) from Ref. [4]. In Eq. (9),  $F_{rel}(\theta)$  is the relativistic factor which has the form

$$F_{\rm rel}(\theta) = \sqrt{\frac{\pi}{2}\theta} / K_2(1/\theta) e^{1/\theta}.$$
 (11)


This is just the factor which has been disregarded in all previous calculations.

One may easily obtain an approximate expression for the relativistic factor  $F_{rel}(\theta)$  using the asymptotic expansion of the Bessel function  $K_2(1/\theta)$  at large  $1/\theta$  [17], that is, at low temperature. The approximate expression can be written as

$$\widetilde{F}_{\rm rel}(\theta) = 1 / \left( 1 + \frac{15}{8} \theta + \frac{105}{128} \theta^2 + \cdots \right).$$
(12)

As will be shown below, Eq. (12) provides an excellent approximation for  $F_{\text{rel}}(\theta)$  with the terms through order  $\theta^2$  at  $\theta \leq 1$ .

The integral in Eq. (10) was calculated by the use of the fivepoint Newton–Coates quadrature formula at temperature  $T \lesssim 10^8$  K. At higher temperature for rapid convergence of the integral, we calculated the integral written in the form proposed by Nahar and Pradhan [18]

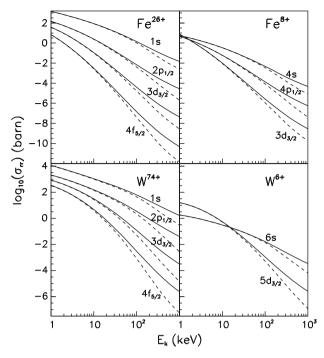


**Fig. 1.** (a) The exact relativistic radiative recombination rate coefficient factor  $F_{\text{rel}}(\theta)$  (solid) and the approximate factor  $\tilde{F}_{\text{rel}}(\theta)$  (dotted); (b) rate coefficients  $\alpha^{(2s)}(T)$  with (solid) and without (dashed) regard to the relativistic factor (Eq. (9)) for recombination of the 2*s* electron with the Xe<sup>52+</sup> ion.

$$\alpha^{(i)}(T) = (2/\pi)^{1/2} c^{-2} (m_0 k_B T)^{-3/2} q_i \int_0^1 (\varepsilon_i - k_B T \ln x)^2 \sigma^{(i)}_{\rm ph}(k) dx.$$
(13)

The integral in Eq. (13) was estimated using Gaussian quadrature with 40 nodes and refined with 80 nodes [19]. The integration was terminated if the difference between the integral values obtained was less than a prescribed accuracy. If the integral was calculated with an insufficient accuracy, the integration interval was reduced and the integral was recalculated. Then the rest of the interval was estimated. This method turns out to be efficient and provides the accuracy required in the calculations.

The majority of the recombination rate coefficients in Table 1 were calculated with an accuracy better than 1%. In the worst cases (outer shells and highest temperatures), the accuracy is  $\leq 5\%$ .


#### 3. Results and discussion

#### 3.1. Relativistic factor for the radiative rate coefficient

It follows from Eq. (11) that the relativistic factor for the recombination rate coefficient depends only on temperature. The *T*-dependence of the factor is demonstrated in Fig. 1(a). As is seen, the factor  $F_{rel}(\theta)$  differs noticeably from unity beginning at several tens of keV. Adopting the relativistic distribution of continuum electrons instead of the nonrelativistic one results in a decrease of the rate coefficient values by a factor of 1.2 at plasma temperature  $k_BT = 50 \text{ keV}$  and up to a factor of 7 at  $k_BT = 1000 \text{ keV}$ . It should be noted that the widely used tables of hydrogenic recombination rate coefficients tabulated for temperatures up to  $T = \infty$  were calculated for the nonrelativistic Maxwell distribution [2].

We also compare the exact relativistic factor  $F_{rel}(\theta)$  (the solid curve in Fig. 1(a)) and the approximate one  $\tilde{F}_{rel}(\theta)$  (the dotted curve). As can be seen, there is little difference between the two curves. The approximate and exact values of the factor differ by ~4% at  $k_BT = 500$  keV and 25% at  $k_BT = 1000$  keV.

To gain a better illustration, we display in Fig. 1(b) the recombination rate coefficients obtained with (solid curve) and without (dashed) the relativistic factor for recombination of the 2*s* electron



**Fig. 2.** Subshell radiative recombination cross sections (in barns) calculated taking into account all multipoles *L* (solid) and within the electric dipole approximation (dashed) as a function of the electron energy  $E_k$ .

with the He-like ion of Xe. One can see that inclusion of the relativistic factor changes  $\alpha^{(2s)}(T)$  considerably at high temperatures.

### 3.2. Multipole effects

The electric dipole approximation involves only terms with L = 1 in Eq. (1). In this case according to selection rules (see Eq. (2)), the associated values of  $\kappa$  are equal to  $\kappa_i - 1, -\kappa_i$ , and  $\kappa_i + 1$  where  $\kappa_i$  refers to the *i*th shell. As is well known, the dipole approximation in PCS calculations holds at low electron energy  $E_k$  but breaks down at a higher energy (see, for example, Refs. [12,13] and references therein). Let us assess the impact of nondipole effects on RRCS and recombination rate coefficients for various highly-charged ions.

In Fig. 2, we compare RRCS obtained by the DF method in the electric dipole approximation  $\sigma_{rr}(dip)$  (dashed curves) with RRCS calculated with allowance made for all necessary multipoles  $\sigma_{rr}(L)$  (solid curves) for various ions of Fe and W. The electron energy range under consideration is  $1 \le E_k \le 1000$  keV. Magnitudes of the percent difference between the two calculations

$$\Delta_{\rm dip} = \frac{\sigma_{\rm rr}(L) - \sigma_{\rm rr}(\rm dip)}{\sigma_{\rm rr}(L)} \times 100\%$$
(14)

are given in Table A for bare nuclei of a number of elements.

As illustrated in Fig. 2, the solid and dashed curves begin to diverge noticeably even at several keV. At the highest energy, 1000 keV, in the case of  $W^{74+}$ ,  $\sigma_{rr}(dip)$  is smaller than the exact value  $\sigma_{rr}(L)$  by ~5 times for the 1s shell and by ~40 times for the  $4f_{5/2}$  subshell. As shown in Table A, the dipole approximation differs from the exact calculation by ~3% to 20% at  $E_k = 10$  keV, ~15% to 50% at  $E_k = 50$  keV, and ~100% (by several multiples in reality) at  $E_k = 1000$  keV. The dependence of  $\Delta_{dip}$  on the orbital quantum number  $\ell_i$  of the shell under consideration is shown to be noticeable,  $\Delta_{dip}$  being larger with increasing  $\ell_i$ . The difference  $\Delta_{dip}$  increases slightly with *Z* at low energies  $E_k \leq 10$  keV and does not depend on *Z* at higher energies. We list in Table A shells with

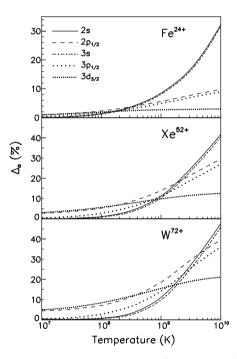

| $E_k$ (keV) | 1s she | 11  |     |     | $2p_{1/2}$ s | shell |     |     | 3d <sub>3/2</sub> s | shell |     |     | $4f_{5/2}$ s | hell |     |     |
|-------------|--------|-----|-----|-----|--------------|-------|-----|-----|---------------------|-------|-----|-----|--------------|------|-----|-----|
|             | Ne     | Fe  | Xe  | W   | Ne           | Fe    | Xe  | w   | Ne                  | Fe    | Xe  | W   | Ne           | Fe   | Xe  | W   |
| 0.01        | 0.1    | 0.7 | 2.9 | 5.2 | 0.1          | 0.7   | 2.6 | 4.3 | 0.1                 | 0.6   | 2.5 | 4.5 | 0.1          | 0.6  | 2.5 | 4.6 |
| 1           | 0.4    | 1.0 | 3.2 | 5.4 | 0.7          | 1.2   | 3.1 | 4.8 | 1.1                 | 1.6   | 3.5 | 5.5 | 1.7          | 2.2  | 4.0 | 6.0 |
| 10          | 3.2    | 3.8 | 5.8 | 7.9 | 5.6          | 6.2   | 7.7 | 8.9 | 10                  | 10    | 12  | 13  | 15           | 15   | 16  | 18  |

Table B

Table A

The number of multipoles *L* taken into account in the present calculation of  $\sigma_{\rm ph}$  for the W<sup>73+</sup> ion.

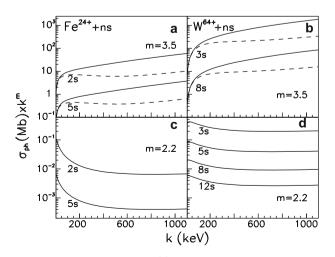
| $E_k$ (keV) | 1 <i>s</i> | $2p_{1/2}$ | $3d_{3/2}$ | $4f_{5/2}$ |
|-------------|------------|------------|------------|------------|
| 10          | 5          | 6          | 8          | 10         |
| 50          | 6          | 7          | 10         | 12         |
| 100         | 7          | 8          | 11         | 14         |
| 500         | 13         | 16         | 21         | 26         |
| 1000        | 19         | 24         | 31         | 37         |



**Fig. 3.** Difference  $\Delta_{\alpha}$  (see Eq. (15)) between rate coefficients calculated with regard to all significant multipoles and in the dipole approximation for recombination of the 2*s*, 2*p*<sub>1/2</sub>, 3*s*, 3*p*<sub>1/2</sub>, and 3*d*<sub>3/2</sub> electrons with He-like ions.

 $j = \ell - 1/2$  only because there is approximately the same difference for shells with  $j = \ell + 1/2$ . As demonstrated in Fig. 2, the difference is scarcely affected by the ion charge and the principal quantum number  $n_i$  of the shell. There is practically the same difference  $\Delta_{dip}$ , for example, for recombination of the 1s electron with the bare nucleus of W and for recombination of the 6s electron with the many-electron ion W<sup>6+</sup> as well as for recombination of the  $3d_{3/2}$  ( $2p_{1/2}$ ) electron with the bare nucleus of Fe and the  $3d_{3/2}$  ( $4p_{1/2}$ ) electron with the ion Fe<sup>8+</sup>.

The results presented show that RRCS obtained within the dipole approximation are inaccurate at high energies. Table B demonstrates how many multipoles must be taken into consideration for various shells of the ion  $W^{73+}$  at various electron energies to achieve the accuracy of ~ 0.01% prescribed in our PCS calculations.


From the aforesaid, it may be assumed that the dipole approximation will also fail in the calculation of recombination rate coefficients at high temperature. In Fig. 3, we present the percent difference between the exact  $\alpha^{(i)}(L)$  and dipole  $\alpha^{(i)}(dip)$  values of the rate coefficient which may be written as

$$\Delta_{\alpha} = \frac{\alpha^{(i)}(L) - \alpha^{(i)}(dip)}{\alpha^{(i)}(L)} \times 100\%.$$
 (15)

The difference is given for recombination of the 2s,  $2p_{1/2}$ , 3s,  $3p_{1/2}$ , and  $3d_{3/2}$  electrons with the He-like ions Fe<sup>24+</sup>, Xe<sup>52+</sup>, and W<sup>72+</sup>. These shells are the lowest ones making significant contribution to total rate coefficients. As evident from the figure, the difference  $\Delta_{\alpha}$  is larger for heavy elements. The inclusion of higher multipoles may change partial rate coefficients by ~7% at a temperature of  $T = 10^8$  K, by ~20% at  $T = 10^9$  K, and by ~50% at  $T = 10^{10}$  K for W<sup>72+</sup>. This shows that at high temperature, total recombination rate coefficients obtained within the dipole approximation will be considerably smaller than accurate values obtained using all multipoles *L*, all other approximations being the same.

#### 3.3. Asymptotic values of photoionization cross sections at high energy

Another problem in the rate coefficient calculation is associated with the necessity to involve PCS or RRCS at high electron energy. Because the proper PCS calculation at high energy is a difficult task, many authors match asymptotic values. Usually the well-known asymptotic expression is involved [6,8] which has been derived



**Fig. 4.** Photoionization cross sections  $\sigma_{ph}^{(ns)}$  multiplied by  $k^m$  where m = 3.5 ((a) and (b)) and m = 2.2 ((c) and (d)) for the *ns* shells of Fe and W ions. Solid lines show the DF calculation having regard to all multipoles *L* and dashed lines show results for the DF dipole approximation.

in the framework of the nonrelativistic dipole approximation and can be written as follows [20],

$$\sigma_{\rm ph}^{(i)} \sim k^{-(3.5+\ell_i)}.$$
 (16)

However, Eq. (16) breaks down for the asymptotic behavior of the relativistic PCS. Both the relativistic and multipole effects contribute to the asymptotic behavior. In Fig. 4, we present the product  $\sigma_{\rm ph}^{(ns)} \times k^m$  for ions Fe<sup>23+</sup> :  $1s^2ns$  and W<sup>63+</sup> :  $[{\rm Ne}]ns$  involving PCS for the *ns*-electrons with various *n*. The DF calculations of  $\sigma_{\rm ph}^{(ns)}$  were carried out with allowance made for all *L* (solid curves) and within the electric dipole approximation (dashed curves). As is seen, the solid curves have no asymptote in the whole photon energy range  $100 \le k \le 1100$  keV with m = 3.5 (Fig. 4(a) and (b)). The dashed curves reach an approximate asymptote has little in common with exact values of the product considered as is evident from a comparison of solid and dashed curves.

In Fig. 4(c) and (d), the product  $\sigma_{\rm ph}^{(ns)} \times k^{2.2}$  is shown. The value m = 2.2 was obtained through fitting of the  $\sigma_{\rm ph}^{(ns)}$  values at lower energies. In this case, the solid curves associated with relativistic calculations including all multipoles reach a rather good asymptote at high energies  $k \approx 500-600$  keV. As shown, this asymptotic behavior holds for various *ns* shells  $(2 \le n \le 12)$  as well as for different elements and different ions. It should be noted that the asymptotic behavior  $\sigma_{\rm ph}^{(ns)} \propto k^{-2.2}$  obtained in the present work correlates well with the energy-dependence  $\sigma_{\rm ph}(k)$  for the 1*s* shell of the hydrogen-like, high-*Z* ions presented by Bethe and Salpeter [21]. They demonstrated that in the relativistic case,  $\sigma_{\rm ph}^{(1s)} \propto k^{-m}$  where *m* varies almost monotonically from  $m \approx 2.7$  to m = 1 at the ultra-relativistic limit, never taking the value m = 3.5.

Consequently, we may say that adoption of the PCS asymptote in the form of Eq. (16) results in inaccurate values of  $\sigma_{ph}^{(i)}$  and  $\sigma_{rr}^{(i)}$  at high  $E_k$  and, because of this, inaccurate values of  $\alpha^{(i)}(T)$  at high *T*. In the present work, the values of  $\sigma_{ph}^{(i)}$  involved in Eq. (10) were found without using an approximate analytical asymptote by direct DF calculations up to the electron energy  $E_k \gtrsim 7000$  keV for the *s*, *p*, and *d* electrons and to several hundred keV for shells with larger orbital angular momenta (or less if the PCS decrease rapidly as  $E_k$  increases). In a few cases we have extrapolate PCS using the Lagrange four-point formula to obtain values at higher energies.

#### 3.4. Comparison with other calculations

In Table C we present our calculated PCS compared with the corresponding results by Ichihara and Eichler [11] and Badnell [8] for the 1s shell of the H-like ion  $Xe^{53+}$ . In each case, we give

#### Table D

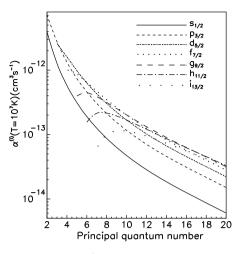
Comparison of our calculated PCS with results by Badnell [8] for the 2s shell of the Lilike ion  $Fe^{23+}$ .

| $E_k$ (keV) | $\sigma_{ m ph}$ (Mb) |           | $\varDelta(\%)$ |
|-------------|-----------------------|-----------|-----------------|
|             | Badnell               | Present   |                 |
| 0.001646    | 2.487(-2)             | 2.380(-2) | -4.5            |
| 0.01646     | 2.451(-2)             | 2.345(-2) | -4.5            |
| 0.07836     | 2.306(-2)             | 2.210(-2) | -4.3            |
| 0.3605      | 1.778(-2)             | 1.712(-2) | -3.8            |
| 0.7836      | 1.259(-2)             | 1.218(-2) | -3.4            |
| 1.646       | 7.002(-3)             | 6.822(-3) | -2.6            |
| 7.836       | 6.582(-4)             | 6.491(-4) | -1.4            |
| 16.46       | 1.263(-4)             | 1.245(-4) | -1.4            |
| 78.36       | 1.782(-6)             | 1.801(-6) | 1.0             |
| 164.6       | 1.821(-7)             | 1.969(-7) | 7.5             |
| 360.5       | 1.471(-8)             | 1.989(-8) | 26              |
| 783.6       | 1.134(-9)             | 2.784(-9) | 59              |

 $\sigma_{\rm ph}^{(1{\rm s})}$  for those values of  $E_k$  which are presented by the other authors. Our results were obtained just for these energies. The percent difference  $\varDelta$  between the PCS obtained in the present work and by the other authors is written as follows,

$$\Delta = \frac{\sigma_{\rm ph}^{(i)}({\rm present}) - \sigma_{\rm ph}^{(i)}({\rm other})}{\sigma_{\rm ph}^{(i)}({\rm present})} \times 100\%.$$
(17)

The case of an one-electron ion is particularly convenient for checking the influence of the higher multipoles and the method of calculation because the ion is free from any inter-electron interactions. Also, the results obtained in the velocity and length gauge coincide for a one-electron ion.


As is evident, our calculations are in excellent agreement over the wide range of electron energy 1 eV  $\leq E_k \leq 6000$  keV with the values from a relativistic calculation [11] where all multipoles were included. In each case, our values of  $\sigma_{ph}^{(i)}$  coincide with an accuracy of three significant digits with the results given in Ref. [11]. The maximum difference between the two calculations is ~1% at the highest energy  $E_k = 6000$  keV.

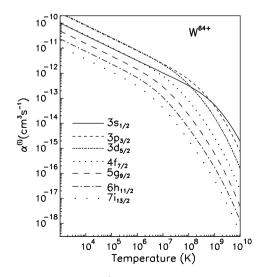
In contrast, PCS obtained by Badnell exceed our values by ~16% in the energy range  $E_k \leq 4$  keV and become smaller at higher energies, decreasing by approximately a factor of 8 at  $E_k \approx 1800$  keV and a factor of ~30 at  $E_k \approx 4000$  keV. The comparison of our PCS calculation for  $\sigma_{\rm ph}^{(25)}$  with results by Badnell for the comparatively light ion Fe<sup>23+</sup> presented in Table D reveals a similar tendency, but smaller in magnitude at low energies. The reason for the difference at low energies is not clear. It is possible that this is the influence of methods of calculation used in Ref. [8]. However, the difference at higher energies is likely due to a combination of ne-

Table C

Comparison of our calculated PCS with results by Ichihara and Eichler [11] and by Badnell [8] for the 1s shell of the H-like ion Xe<sup>53+</sup>.

| $E_k$ (keV) | $\sigma_{ m ph}$ (Mb) |          | $E_k$ (keV) | $\sigma_{ m ph}$ (Mb) |           | $\varDelta(\%)$ |
|-------------|-----------------------|----------|-------------|-----------------------|-----------|-----------------|
|             | Ichihara and Eichler  | Present  |             | Badnell               | Present   |                 |
| 0.001       | 1.94(-3)              | 1.94(-3) | 0.00083     | 2.246(-3)             | 1.937(-3) | -16             |
| 0.004       | 1.94(-3)              | 1.94(-3) | 0.00397     | 2.245(-3)             | 1.937(-3) | -16             |
| 0.04        | 1.94(-3)              | 1.94(-3) | 0.03967     | 2.240(-3)             | 1.935(-3) | -16             |
| 0.2         | 1.92(-3)              | 1.92(-3) | 0.1824      | 2.218(-3)             | 1.918(-3) | -16             |
| 0.4         | 1.89(-3)              | 1.89(-3) | 0.3967      | 2.186(-3)             | 1.892(-3) | -16             |
| 2.          | 1.71(-3)              | 1.71(-3) | 1.824       | 1.938(-3)             | 1.732(-3) | -15             |
| 4.          | 1.52(-3)              | 1.52(-3) | 3.967       | 1.734(-3)             | 1.523(-3) | -14             |
| 40.         | 3.08(-4)              | 3.08(-4) | 39.67       | 3.256(-4)             | 3.114(-4) | -4.5            |
| 80.         | 9.94(-5)              | 9.94(-5) | 83.31       | 9.095(-5)             | 9.206(-5) | 1.2             |
| 200.        | 1.40(-5)              | 1.41(-5) | 182.4       | 1.539(-5)             | 1.740(-5) | 12              |
| 400.        | 2.75(-6)              | 2.75(-6) | 396.7       | 1.894(-6)             | 2.802(-6) | 32              |
| 800.        | 5.97(-7)              | 5.97(-7) | 833.1       | 2.071(-7)             | 5.495(-7) | 62              |
| 2000.       | 1.13(-7)              | 1.13(-7) | 1824.       | 1.730(-8)             | 1.318(-7) | 87              |
| 4000.       | 4.07(-8)              | 4.07(-8) | 3967.       | 1.350(-9)             | 4.117(-8) | 97              |
| 6000.       | 2.39(-8)              | 2.36(-8) |             |                       |           |                 |




**Fig. 5.** Partial rate coefficients  $\alpha^{(i)}$  versus the principal quantum number *n* for recombination of electrons into various states with the ion W<sup>72+</sup> at  $T = 10^7$  K.

glect of the higher multipoles and the semi-relativistic approximation used in Ref. [8].

Our total recombination rate coefficients for the tungsten ions  $W^{74+}$ ,  $W^{64+}$ , and  $W^{56+}$  were compared with results by Kim and Pratt [5] obtained in the framework of an approximate method using cross sections for the bremsstrahlung "tip" region together with only a few direct calculations of RRCS. The authors performed relativistic Dirac–Slater calculations of the RRCS with regard to all multipoles. All other cross sections for each state  $n\kappa$  were obtained by interpolation using the quantum defect method. Although an approximate approach was used in Ref. [5], the comparison revealed a reasonably good agreement between the two calculations. The difference ranged from 3% to 11% (depending on the temperature) for the bare nucleus and from 16% to 36% for the Ar-like ion. Clearly the relativistic factor  $F_{rel}(\theta)$  (Eq. (11)) was not included in Ref. [5]. At the maximum temperature under consideration  $k_BT = 30 \text{ keV}$ ,  $F_{rel}(\theta) = 0.9$ .

#### 3.5. Radiative rate coefficients for tungsten ions

Rate coefficients are given in Table 1 for recombination of an electron with the following ions of tungsten: the bare nucleus  $W^{74+}$ , the H-like ion  $W^{73+}$ , and for seven ions with closed shells – the He-like ion  $W^{72+}$ , the Be-like ion  $W^{70+}$ , the Ne-like ion  $W^{64+}$ ,



**Fig. 6.** Partial rate coefficients  $\alpha^{(i)}$  versus temperature *T* for recombination of electrons into various states with the ion W<sup>64+</sup>.

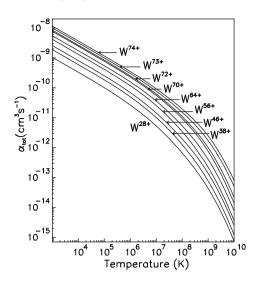



Fig. 7. Total radiative recombination rate coefficients  $\alpha_{tot}$  for the tungsten ions under consideration.

the Ar-like ion W<sup>56+</sup>, the Ni-like ion W<sup>46+</sup> having the most stable electron configuration [Kr] $3d_{3/2}^43d_{5/2}^6$  [10], the Kr-like ion W<sup>38+</sup>, and the Pd-like ion W<sup>28+</sup>. Fifteen values of temperature in the range  $10^3 \le T \le 10^{10}$  K are considered. Relativistic DF calculations were performed using expressions and methods described above.

The partial recombination rate coefficients  $\alpha_{rel}^{(i)}$  (below  $\alpha^{(i)}$ ) are presented in Table 1 for electron states with  $n \leq 12$  and  $\ell \leq 6$  as well as the total recombination rate coefficients which are written as

$$\alpha_{\text{tot}} = \sum_{i=n\kappa} \alpha^{(i)}.$$
 (18)

The summation in Eq. (18) was extended over all electron states with  $n \leq 20$  and all possible relativistic quantum numbers  $\kappa = \pm 1, \pm 2, \ldots - n$ . Electron states with n > 20 were not taken into account because in a real plasma, there is a cutoff of bound levels from density effects, above which recombination is not meaningful. For fusion plasmas with electron density in the range of  $10^{14}/\text{cm}^3$ , the upper limit on the principal quantum number is  $n \leq 20$ .

We present the partial rate coefficients for high electron shells because their magnitudes are sometimes larger or comparable to those for lower shells. In Fig. 5, partial rate coefficients  $\alpha^{(i)}$  are shown versus the principal quantum number *n* for shells with various orbital angular momenta  $0\leqslant\ell\leqslant 6.$  The data are given for the ion  $W^{72+}$  and for the temperature  $T = 10^7$  K. It is seen that  $\alpha^{(i)}$  for shells with large  $\ell$  are at times comparable with values for shells with smaller  $\ell$  at the specific *n* and at other times exceed them. Though rate coefficients usually fall with increasing *n*, for shells with large  $\ell$ ,  $\alpha^{(i)}$  first increases with *n* (see the *n*-dependence of the g, h, and i shells), so that a number of shells with large n and  $\ell$  contribute considerably to  $\alpha_{tot}$ , especially at low temperature. An example of the dependence of the partial recombination rate coefficients on temperature is displayed in Fig. 6. One can see that at  $T \lesssim 10^8$  K,  $\alpha^{(3p_{3/2})}$  and  $\alpha^{(3d_{5/2})}$  are very close to each other and exceed  $\alpha^{(3s)}$  for the more inner 3s shell. At  $T \leq 10^5$  K,  $\alpha^{(4f_{7/2})}$  and  $\alpha^{(3s)}$ have approximately the same magnitude. As is seen from Table 1. in the case of W<sup>64+</sup> and  $T = 10^3$  K, the maximum contribution to  $\alpha_{tot}$  from the lowest  $3d_{5/2}$  state is  $1.02\times 10^{-10}~cm^3/s$  while the contribution of the highest state presented,  $12i_{13/2}$ , is  $1.83 \times 10^{-11}$ cm<sup>3</sup>/s (i.e., 18% of the maximum contribution). The shells presented in Table 1 contribute from 70% to 99% of the total recombination rate coefficients. In Fig. 7,  $\alpha_{tot}$  are presented for all tungsten ions under consideration.

## 4. Conclusions

We have calculated the exact relativistic DF partial and total radiative recombination rate coefficients including all significant multipoles and the relativistic factor for a wide temperature range for nine highly-charged tungsten ions which are of great current interest and for which data are not available.

For the first time, a new fully relativistic formula for the radiative recombination rate coefficient has been derived in a consistent way, that is, using relativistic expressions for PCS and for the transformation coefficient between PCS and RRCS as well as the relativistic Maxwell–Boltzmann distribution of continuum electrons instead of the nonrelativistic one adopted earlier. The formula has been factorized giving rise to the temperature-dependent relativistic correction factor for which the usual nonrelativistic expression for the rate coefficient must be multiplied. This factor has been naturally absent in all previous calculations and available databases, even though the rate coefficients have been calculated at high temperatures up to infinity.

We have shown that a contribution of multipole effects in recombination rate coefficients for highly-charged ions is significant (10-50%) at electron energies of the order of 10 keV and higher. Note that the multipole effects are neglected in the majority of plasmas calculations.

#### Acknowledgments

This work was funded through the International Atomic Energy Agency under Contract No. 13349/RBF and partially by the Russian Foundation for Basic Research (Project No. 09-02-00352) which are gratefully acknowledged.

## Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.adt.2009.08.004.

#### References

- R. Neu, R. Dux, A. Kallenbach, T. Pütterich, M. Balden, J.C. Fuchs, A. Herrmann, C.F. Maggi, M. O'Mullane, R. Pugno, I. Radivojevic, V. Rohde, A.C.C. Sips, W. Suttrop, A. Whiteford, the ASDEX Upgrade Team, Nucl. Fusion 45 (2005) 209.
   A. Burgess, Mem. R. Astron. Soc. 60 (Pt. 1) (1964) 1.
- [3] R.E.H. Clark, R.D. Cowan, F.W. Bobrowicz, At. Data Nucl. Data Tables 34 (1986) 415
- [4] W.D. Barfield, J. Phys. B: At. Mol. Opt. Phys. 13 (1980) 931.
- [5] Y.S. Kim, R.H. Pratt, Phys. Rev. A 27 (1983) 2913
- [6] D.A. Verner, G.J. Ferland, Astrophys. J. Suppl. Ser. 103 (1996) 467.
- [7] S.N. Nahar, A.K. Pradhan, Radiat. Phys. Chem. 70 (2004) 323.
- [8] N.R. Badnell, Astrophys. J. Suppl. Ser. 167 (2006) 334. Available from: <a href="http://amdpp.phys.strath.ac.uk/tamoc/DATA/PI/key.html/">http://amdpp.phys.strath.ac.uk/tamoc/DATA/PI/key.html/</a>.
- [9] M.B. Trzhaskovskaya, V.K. Nikulin, R.E.H. Clark, Phys. Rev. E 78 (2008) 035401(R).
- [10] M.B. Trzhaskovskaya, V.K. Nikulin, R.E.H. Clark, At. Data Nucl. Data Tables 94 (2008) 71.
- [11] A. Ichihara, J. Eichler, At. Data Nucl. Data Tables 74 (2000) 1.
- [12] M.B. Trzhaskovskaya, V.K. Nikulin, V.I. Nefedov, V.G. Yarzhemsky, J. Phys. B: At. Mol. Opt. Phys. 34 (2001) 3221.
- [13] M.B. Trzhaskovskaya, V.I. Nefedov, V.K. Nikulin, Opt. Spectrosc. 91 (2001) 569.
- [14] M.B. Trzhaskovskaya, V.K. Nikulin, Opt. Spectrosc. 95 (2003) 537.
   [15] I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At.
- Data Nucl. Data Tables 81 (2002) 1.
- [16] M. Alexanian, Phys. Rev. 165 (1968) 253.
- M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, National Bureau of Standards, Appl. Math. Series, vol. 55, 1964.
   S.N. Nahar, A.K. Pradhan, Phys. Rev. A 49 (1994) 1816.
- [19] A.S. Kronrod, Nodes and Weights of Quadrature Formulas, Consultants Bureau, New York, 1965.
- [20] U. Fano, J.W. Cooper, Rev. Mod. Phys. 40 (1968) 441.
- [21] H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms, Springer-Verlag, Berlin, 1957. Chapter IV.

# **Explanation of Table**

# Table 1. Radiative recombination rate coefficients.

For each ion:

Second line<br/>Next linesDecimal logarithm of temperature T in K (1 K =  $0.8617 \times 10^{-4}$  eV)Partial rate coefficients  $\alpha_{rel}^{(i)}(T)$  in cm<sup>3</sup> s<sup>-1</sup>Last lineTotal rate coefficients  $\alpha_{tot}(T)$  in cm<sup>3</sup> s<sup>-1</sup>

The decimal order is presented to the right for a recombination rate coefficient value.

| Table T |
|---------|
|---------|

|                                      |         | ()      |         |         |         |         |                      |         |         |         |         |         |         |         |        |
|--------------------------------------|---------|---------|---------|---------|---------|---------|----------------------|---------|---------|---------|---------|---------|---------|---------|--------|
|                                      | 3.0     | 3.5     | 4.0     | 4.5     | 5.0     | 5.5     | 6.0                  | 6.5     | 7.0     | 7.5     | 8.0     | 8.5     | 9.0     | 9.5     | 10.0   |
| N <sup>28+</sup>                     |         |         |         |         |         |         |                      |         |         |         |         |         |         |         |        |
| $f_{5/2}$                            | 8.96-11 | 5.04-11 | 2.83-11 | 1.59-11 | 8.91-12 | 4.92-12 | 2.62-12              | 1.27-12 | 5.12-13 | 1.60-13 | 3.86-14 | 7.54–15 | 1.18-15 | 1.31-16 | 8.84-1 |
| $f_{7/2}$                            | 1.17-10 | 6.58-11 | 3.70-11 | 2.08-11 | 1.16-11 | 6.42-12 | 3.42-12              | 1.65-12 | 6.65-13 | 2.07-13 | 4.97-14 | 9.68-15 | 1.51-15 | 1.67-16 | 1.13-  |
| s <sub>1/2</sub>                     | 4.68-12 | 2.64-12 | 1.48-12 | 8.35-13 | 4.71-13 | 2.68-13 | 1.55-13              | 9.28-14 | 5.88-14 | 3.80-14 | 2.30-14 | 1.16-14 | 4.27-15 | 9.95-16 | 1.45-1 |
| $p_{1/2}$                            |         |         |         |         |         |         | 1.54-13              |         |         |         |         |         |         |         |        |
| $p_{3/2}$                            | 1.25-11 | 7.05-12 | 3.97-12 | 2.23-12 | 1.26-12 | 7.17-13 | 4.16-13              | 2.51-13 | 1.56-13 | 9.27-14 | 4.52-14 | 1.64-14 | 4.09-15 | 6.35-16 | 5.82-  |
| $d_{3/2}$                            |         |         |         |         |         |         | 5.12-13              |         |         |         |         |         |         |         |        |
| d <sub>5/2</sub>                     |         |         |         |         |         |         | 7.81-13              |         |         |         |         |         |         |         |        |
| $f_{5/2}$                            |         |         |         |         |         |         | 9.88-13              |         |         |         |         |         |         |         |        |
| $f_{7/2}$                            |         |         |         |         |         |         | 1.31-12              |         |         |         |         |         |         |         |        |
| g <sub>7/2</sub>                     |         |         |         |         |         |         | 3.82-13              |         |         |         |         |         |         |         |        |
| 87/2<br>89/2                         |         |         |         |         |         |         | 4.75-13              |         |         |         |         |         |         |         |        |
| 59/2<br>S <sub>1/2</sub>             |         |         |         |         |         |         | 7.85-14              |         |         |         |         |         |         |         |        |
| $p_{1/2}$                            |         |         |         |         |         |         | 7.50-14              |         |         |         |         |         |         |         |        |
| $p_{3/2}$                            |         |         |         |         |         |         | 2.09-13              |         |         |         |         |         |         |         |        |
| $d_{3/2}$                            |         |         |         |         |         |         | 2.46-13              |         |         |         |         |         |         |         |        |
| '                                    |         |         |         |         |         |         | 3.81-13              |         |         |         |         |         |         |         |        |
| d <sub>5/2</sub><br>f <sub>5/2</sub> |         |         |         |         |         |         | 5.34-13              |         |         |         |         |         |         |         |        |
| J 5/2<br>f <sub>7/2</sub>            |         |         |         |         |         |         | 7.11– 13             |         |         |         |         |         |         |         |        |
| '                                    |         |         |         |         |         |         | 3.82–13              |         |         |         |         |         |         |         |        |
| g <sub>7/2</sub>                     |         |         |         |         |         |         | 3.82-13<br>4.75-13   |         |         |         |         |         |         |         |        |
| g <sub>9/2</sub>                     |         |         |         |         |         |         | 4.75-15<br>8.49-14   |         |         |         |         |         |         |         |        |
| h <sub>9/2</sub>                     |         |         |         |         |         |         | 8.49-14<br>1.02-13   |         |         |         | 3.32-16 |         |         |         |        |
| $h_{11/2}$                           |         |         |         |         |         |         | 4.69-14              |         |         |         |         |         |         |         |        |
| s <sub>1/2</sub>                     |         |         |         |         |         |         | 4.09-14              |         |         |         |         |         |         |         |        |
| $p_{1/2}$                            |         |         |         |         |         |         | 1.23-13              |         |         |         |         |         |         |         |        |
| р <sub>3/2</sub>                     |         |         |         |         |         |         | 1.40-13              |         |         |         |         |         |         |         |        |
| d <sub>3/2</sub>                     |         |         |         |         |         |         | 1.40- 13<br>2.19- 13 |         |         |         |         |         |         |         |        |
| d <sub>5/2</sub>                     |         |         |         |         |         |         | 2.19-13<br>3.20-13   |         |         |         |         |         |         |         |        |
| f <sub>5/2</sub>                     |         |         |         |         |         |         |                      |         |         |         |         |         |         |         |        |
| $f_{7/2}$                            |         |         |         |         |         |         | 4.26-13              |         |         |         |         |         |         |         |        |
| g <sub>7/2</sub>                     |         |         |         |         |         |         | 3.04-13              |         |         |         |         |         |         |         |        |
| <b>g</b> <sub>9/2</sub>              |         |         |         |         |         |         | 3.77-13              |         |         |         |         |         |         |         |        |
| h <sub>9/2</sub>                     |         |         |         |         |         |         | 1.19-13              |         |         |         |         |         |         |         |        |
| $h_{11/2}$                           |         |         |         | 1.24-12 |         |         |                      |         |         |         | 4.64-16 |         |         |         |        |
| $i_{11/2}$                           |         |         |         | 3.27-13 |         |         |                      |         |         |         | 6.85-17 |         |         |         |        |
| i <sub>13/2</sub>                    |         |         |         | 3.81-13 |         |         |                      |         |         |         | 7.98-17 |         |         |         |        |
| s <sub>1/2</sub>                     |         |         |         |         |         |         | 3.06-14              |         |         |         |         |         |         |         |        |
| $p_{1/2}$                            |         |         |         |         |         |         | 2.83-14              |         |         |         |         |         |         |         |        |
| p <sub>3/2</sub>                     |         |         |         |         |         |         | 8.01-14              |         |         |         |         |         |         |         |        |
| d <sub>3/2</sub>                     |         |         |         |         |         |         | 8.82-14              |         |         |         |         |         |         |         |        |
| d <sub>5/2</sub>                     |         |         |         |         |         |         | 1.39-13              |         |         |         |         |         |         |         |        |
| $f_{5/2}$                            |         |         |         |         |         |         | 2.06-13              |         |         |         |         |         |         |         |        |
| $f_{7/2}$                            |         |         |         |         |         |         | 2.76-13              |         |         |         |         |         |         |         |        |
| g <sub>7/2</sub>                     |         |         |         |         |         |         | 2.31-13              |         |         |         |         |         |         |         |        |
| g <sub>9/2</sub>                     |         |         |         |         |         |         | 2.87-13              |         |         |         |         |         |         |         |        |
| h <sub>9/2</sub>                     |         |         |         |         |         |         | 1.20-13              |         |         |         |         |         |         |         |        |
| $h_{11/2}$                           |         |         |         |         |         |         | 1.43-13              |         |         |         |         |         |         |         |        |
| i <sub>11/2</sub>                    |         |         |         |         |         |         | 5.09-14              |         |         |         |         |         |         |         |        |
| i <sub>13/2</sub>                    |         |         |         |         |         |         | 5.93-14              |         |         |         |         |         |         |         |        |
| <i>s</i> <sub>1/2</sub>              |         |         |         |         |         |         | 2.12-14              |         |         |         |         |         |         |         |        |
| $p_{1/2}$                            |         |         |         |         |         |         | 1.96-14              |         |         |         |         |         |         |         |        |
| p <sub>3/2</sub>                     |         |         |         |         |         |         | 5.53-14              |         |         |         |         |         |         |         |        |
| d <sub>3/2</sub>                     |         |         |         |         |         |         | 5.96-14              |         |         |         |         |         |         |         |        |
| d <sub>5/2</sub>                     |         |         |         |         |         |         | 9.40-14              |         |         |         |         |         |         |         |        |
| f <sub>5/2</sub>                     |         |         |         |         |         |         | 1.41-13              |         |         |         |         |         |         |         |        |
| f <sub>7/2</sub>                     |         |         |         |         |         |         | 1.89-13              |         |         |         |         |         |         |         |        |
| g <sub>7/2</sub>                     |         |         |         |         |         |         | 1.75-13              |         |         |         |         |         |         |         |        |
| g <sub>9/2</sub>                     |         |         |         |         |         |         | 2.18-13              |         |         |         |         |         |         |         |        |
| $h_{9/2}$                            |         |         |         |         |         |         | 1.08-13              |         |         |         |         |         |         |         |        |
| $h_{11/2}$                           |         |         |         |         |         |         | 1.29-13              |         |         |         | 4.21-16 |         |         |         |        |
| i <sub>11/2</sub>                    |         |         |         |         |         |         | 5.84-14              |         |         |         |         |         |         |         |        |
| i <sub>13/2</sub>                    |         |         |         |         |         |         | 6.81–14              |         |         |         | 1.52–16 |         |         |         |        |
| $0s_{1/2}$                           |         |         |         |         |         |         | 1.54–14              |         |         |         | 1.84–15 |         |         |         |        |
| $0p_{1/2}$                           | 4.20-13 | 2.37-13 | 1.34–13 | 7.57–14 | 4.28-14 | 2.44-14 | 1.42-14              | 8.62-15 | 5.58-15 | 3.60-15 | 1.97–15 | 7.97–16 | 2.22-16 | 3.84–17 | 4.03-1 |
| $0p_{3/2}$                           | 1 21-12 | 6.81-13 | 3.85-13 | 2.17-13 | 1.23-13 | 6.97-14 | 4.00-14              | 2.35-14 | 1.41-14 | 8.13-15 | 3.93-15 | 1.42-15 | 3.54-16 | 5.49-17 | 5.02-1 |

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

|                                | log <sub>10</sub> T (K | 3.5     | 4.0     | 4.5     | 5.0     | 5.5       | 6.0     | 6.5     | 7.0     | 7.5     | 8.0     | 8.5     | 9.0     | 9.5     | 10.0   |
|--------------------------------|------------------------|---------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
|                                |                        |         |         |         |         |           |         |         |         |         |         |         |         |         |        |
| $10d_{3/2}$                    |                        |         |         | 2.09-13 |         |           |         |         |         | 8.15-15 |         |         |         |         |        |
| $10d_{5/2}$                    |                        |         |         | 3.37-13 |         |           |         |         |         | 1.20-14 |         |         |         |         |        |
| $10f_{5/2}$                    |                        |         |         | 5.27-13 |         |           |         |         |         | 8.62-15 |         |         |         |         |        |
| $10f_{7/2}$                    |                        |         |         | 7.11-13 |         |           |         |         |         | 1.13-14 |         |         |         |         |        |
| $10g_{7/2}$                    |                        |         |         | 9.11-13 |         |           |         |         |         | 4.37–15 |         |         |         |         |        |
| $10g_{9/2}$                    |                        |         |         | 1.14–12 |         |           |         |         |         | 5.41-15 |         |         |         |         |        |
| $10h_{9/2}$                    | 4.55-12                | 2.57-12 | 1.45-12 | 8.09-13 | 4.38-13 | 2.19-13   | 9.30-14 |         |         | 1.62-15 |         |         |         |         |        |
| $10h_{11/2}$                   |                        |         |         | 9.70-13 |         |           |         |         |         | 1.94–15 |         |         |         |         |        |
| $10i_{11/2}$                   |                        |         |         | 6.22-13 |         |           |         |         |         | 7.21–16 |         |         |         |         |        |
| 10i <sub>13/2</sub>            | 4.12-12                | 2.32-12 | 1.31–12 | 7.25–13 | 3.82-13 | 1.80-13   | 6.78-14 | 1.93–14 | 4.33-15 | 8.41-16 | 1.51–16 | 2.55-17 | 3.75–18 | 4.05-19 | 2.72-2 |
| l 1 <i>s</i> <sub>1/2</sub>    | 3.50-13                | 1.98-13 | 1.12–13 | 6.32-14 | 3.57-14 | 2.03-14   | 1.15–14 | 6.58-15 | 3.82-15 | 2.30-15 | 1.34–15 | 6.62-16 | 2.42-16 | 5.62-17 | 8.20-1 |
| $1 p_{1/2}$                    | 3.19–13                | 1.80–13 | 1.02-13 | 5.75-14 | 3.25-14 | 1.84–14   | 1.06-14 | 6.39–15 | 4.09-15 | 2.63-15 | 1.43-15 | 5.80-16 | 1.61–16 | 2.79-17 | 2.93-1 |
| l 1p <sub>3/2</sub>            | 9.11-13                | 5.14-13 | 2.91-13 | 1.64–13 | 9.28-14 | 5.25-14   | 3.00-14 | 1.74–14 | 1.04–14 | 5.96-15 | 2.88-15 | 1.04-15 | 2.59-16 | 4.01-17 | 3.67-1 |
| $1d_{3/2}$                     | 8.54-13                | 4.82-13 | 2.73-13 | 1.55-13 | 8.83-14 | 5.14-14   | 3.13-14 | 1.98–14 | 1.20-14 | 6.00-15 | 2.19-15 | 5.74-16 | 1.07-16 | 1.31–17 | 9.40-1 |
| $1d_{5/2}$                     | 1.38-12                | 7.79–13 | 4.41-13 | 2.50-13 | 1.43-13 | 8.27-14   | 4.97-14 | 3.08-14 | 1.82-14 | 8.83-15 | 3.14-15 | 8.05-16 | 1.48-16 | 1.79–17 | 1.27-1 |
| $1f_{5/2}$                     | 2.13-12                | 1.20-12 | 6.81-13 | 3.86-13 | 2.20-13 | 1.28-13   | 7.45-14 | 4.11-14 | 1.88-14 | 6.44-15 | 1.64-15 | 3.29-16 | 5.21-17 | 5.79-18 | 3.92-1 |
| $11f_{7/2}$                    | 2.87-12                | 1.62-12 | 9.19-13 | 5.21-13 | 2.97-13 | 1.72-13   | 1.00-13 | 5.48-14 | 2.49-14 | 8.47-15 | 2.15-15 | 4.28-16 | 6.75-17 | 7.50-18 | 5.07-1 |
| $11g_{7/2}$                    |                        |         |         | 7.09-13 |         |           |         |         |         | 3.41-15 |         |         |         |         |        |
| $1_{g_{9/2}}$                  |                        |         |         | 8.85-13 |         |           |         |         |         | 4.23-15 |         |         |         |         |        |
| $11h_{9/2}$                    |                        |         |         | 6.86-13 |         |           |         |         |         | 1.37-15 |         |         |         |         |        |
| $11h_{11/2}$                   |                        |         |         | 8.22-13 |         |           |         |         |         | 1.64-15 |         |         |         |         |        |
| $11i_{11/2}$                   |                        |         |         | 5.80-13 |         |           |         |         |         | 6.71–16 |         |         |         |         |        |
| $11_{11/2}$<br>$11_{i_{13/2}}$ |                        |         |         | 6.77-13 |         |           |         |         |         | 7.82–16 |         |         |         |         |        |
| $12s_{1/2}$                    |                        |         |         | 4.90-14 |         |           |         |         |         | 1.73-15 |         |         |         |         |        |
| $12p_{1/2}$                    |                        |         |         | 4.50-14 |         |           |         |         |         | 1.98-15 |         |         |         |         |        |
| $12p_{3/2}$                    |                        |         |         | 1.28-13 |         |           |         |         |         | 4.49-15 |         |         |         |         |        |
| $12p_{3/2}$<br>$12d_{3/2}$     |                        |         |         | 1.18-13 |         |           |         |         |         | 4.55-15 |         |         |         |         |        |
|                                |                        |         |         |         |         |           |         |         |         |         |         |         |         |         |        |
| $12d_{5/2}$                    |                        |         |         | 1.92-13 |         |           |         |         |         | 6.69-15 |         |         |         |         |        |
| $12f_{5/2}$                    |                        |         |         | 2.92-13 |         |           |         |         |         | 4.94-15 |         |         |         |         |        |
| $12f_{7/2}$                    |                        |         |         | 3.95-13 |         |           |         |         |         | 6.49-15 |         |         |         |         |        |
| $12g_{7/2}$                    |                        |         |         | 5.60-13 |         |           |         |         |         | 2.71-15 |         |         |         |         |        |
| $12g_{9/2}$                    |                        |         |         | 7.01–13 |         |           |         |         |         | 3.36-15 |         |         |         |         | 1.48-1 |
| $12h_{9/2}$                    |                        |         |         | 5.78-13 |         |           |         |         |         | 1.15–15 |         |         |         |         |        |
| $12h_{11/2}$                   | 3.88-12                | 2.19-12 | 1.24–12 | 6.94-13 | 3.75-13 | 1.88–13   | 7.95–14 |         |         | 1.38–15 |         |         |         |         |        |
| $12i_{11/2}$                   | 2.95-12                | 1.67-12 | 9.43-13 | 5.23-13 | 2.76-13 | 1.29–13   | 4.88-14 | 1.39–14 | 3.11-15 | 6.04-16 | 1.09–16 | 1.83–17 | 2.69-18 | 2.91-19 | 1.95-2 |
| $12i_{13/2}$                   | 3.44-12                | 1.95-12 | 1.10-12 | 6.10-13 | 3.22-13 | 1.51–13   | 5.69-14 | 1.62–14 | 3.63-15 | 7.04-16 | 1.27-16 | 2.13-17 | 3.14-18 | 3.39–19 | 2.28-2 |
| otal                           | 1.04-09                | 5.88-10 | 3.32-10 | 1.85–10 | 1.01-10 | 5.32-11   | 2.65-11 | 1.24–11 | 5.31-12 | 2.01-12 | 6.64–13 | 1.88–13 | 4.32-14 | 6.95-15 | 7.36–1 |
| W <sup>38+</sup>               |                        |         |         |         |         |           |         |         |         |         |         |         |         |         |        |
| 4d <sub>3/2</sub>              | 7 32-11                | 4 12-11 | 2 32-11 | 1 30-11 | 7 33-12 | 4 12-12   | 2.30-12 | 1 27-12 | 6 56-13 | 2 91-13 | 1 00-13 | 2 57-14 | 478-15  | 584-16  | 4 18-1 |
| $4d_{5/2}$                     |                        |         |         |         |         |           | 3.36-12 |         |         |         |         |         |         |         |        |
| 4f <sub>5/2</sub>              |                        |         |         |         |         |           | 2.27-12 |         |         |         |         |         |         |         |        |
| ,                              |                        |         |         |         |         |           | 2.27-12 |         |         | 1.99–13 |         |         |         |         |        |
| 4f <sub>7/2</sub>              |                        |         |         |         |         |           |         |         |         |         |         |         |         |         |        |
| os <sub>1/2</sub>              |                        |         |         |         |         |           | 2.66-13 |         |         |         |         |         |         |         |        |
| $p_{1/2}$                      |                        |         |         | 1.64-12 |         |           |         | 1.78-13 |         |         |         |         |         |         |        |
| $p_{3/2}$                      |                        |         |         |         |         |           | 7.47-13 |         |         |         |         |         |         |         |        |
| $5d_{3/2}$                     |                        |         |         |         |         |           | 9.63-13 |         |         |         |         |         |         |         |        |
| $5d_{5/2}$                     |                        |         |         |         |         |           | 1.43-12 |         |         | 1.87-13 |         |         |         |         |        |
| $5f_{5/2}$                     |                        |         |         | 8.03-12 |         |           |         |         |         | 9.66-14 |         |         |         |         |        |
| $5f_{7/2}$                     |                        |         |         | 1.06-11 |         |           |         |         |         | 1.26–13 |         |         |         |         |        |
| 5g <sub>7/2</sub>              |                        |         |         | 3.83-12 |         |           |         |         |         | 2.23-14 |         |         |         |         |        |
| 5g <sub>9/2</sub>              |                        |         |         | 4.75-12 |         |           |         |         |         | 2.76-14 |         |         |         |         |        |
| $5s_{1/2}$                     | 4.52-12                | 2.54-12 | 1.43–12 | 8.06-13 | 4.54–13 | 2.57-13   | 1.46-13 | 8.46-14 | 5.01-14 | 2.99-14 | 1.70–14 | 8.32-15 | 3.03-15 | 7.02–16 | 1.02-1 |
| $5p_{1/2}$                     | 4.82-12                | 2.71-12 | 1.53–12 | 8.61-13 | 4.86-13 | 2.75-13   | 1.59–13 | 9.42-14 | 5.79-14 | 3.49-14 | 1.81–14 | 7.18–15 | 1.99–15 | 3.43-16 | 3.60-1 |
| $5p_{3/2}$                     | 1.26-11                | 7.12-12 | 4.01-12 | 2.25-12 | 1.27-12 | 7.18–13   | 4.09-13 | 2.36-13 | 1.37-13 | 7.50–14 | 3.50-14 | 1.25-14 | 3.09-15 | 4.80-16 | 4.39-1 |
| $5d_{3/2}$                     | 1.61-11                | 9.09-12 | 5.11-12 | 2.88-12 | 1.62-12 | 9.16-13   | 5.20-13 | 2.94-13 | 1.58-13 | 7.26-14 | 2.56-14 | 6.64-15 | 1.24-15 | 1.52-16 | 1.09-1 |
| $5d_{5/2}$                     | 2.44-11                | 1.37-11 | 7.72-12 | 4.34-12 | 2.45-12 | 1.38-12   | 7.81–13 |         |         | 1.05-13 |         |         |         |         |        |
| $5f_{5/2}$                     |                        |         |         | 4.96-12 |         |           |         |         |         | 6.19–14 |         |         |         |         |        |
| $5f_{7/2}$                     |                        |         |         | 6.55-12 |         |           |         |         |         | 8.06-14 |         |         |         |         |        |
| 5g <sub>7/2</sub>              |                        |         |         | 3.93-12 |         |           |         |         |         | 2.32-14 |         |         |         |         |        |
| /                              |                        |         |         | 4.87–12 |         |           |         |         |         | 2.32-14 |         |         |         |         |        |
| 5g <sub>9/2</sub>              |                        |         |         |         |         |           |         |         |         |         |         |         |         |         |        |
| $5h_{9/2}$                     |                        |         |         | 1.37-12 |         |           |         |         |         | 4.49-15 |         |         |         |         |        |
| $5h_{11/2}$                    |                        |         |         | 1.64-12 |         |           |         |         |         | 5.36-15 |         |         |         |         |        |
| 7s <sub>1/2</sub>              |                        |         |         | 5.01-13 |         |           |         |         |         | 1.80-14 |         |         |         |         |        |
| $7p_{1/2}$                     | 2.91-12                |         |         | 5.20-13 |         |           |         |         |         | 2.09-14 |         |         |         |         |        |
| $7p_{3/2}$                     |                        |         |         |         |         | 4 4 4 1 2 | 127 12  | 1 AE 12 | U 0C 1A | 4.56–14 |         | 1111    | 1 UC 1E | 100 10  | . GA 1 |

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

| 7.4         1.48-11         8.1-12         1.20-13         1.24-13         1.24-13         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14         1.24-14 <th1.24-14< th=""> <th1.24-14< th=""> <th1.2< th=""><th>1.58-14<math>4.09-15</math><math>7.66-16</math><math>9.38-17</math><math>6.73-18</math><math>2.23-14</math><math>5.68-15</math><math>1.05-15</math><math>1.26-16</math><math>9.00-18</math><math>1.06-14</math><math>2.13-15</math><math>3.39-16</math><math>3.79-17</math><math>2.57-18</math><math>1.37-14</math><math>2.76-15</math><math>4.38-16</math><math>4.88-17</math><math>3.30-18</math><math>4.07-15</math><math>7.33-16</math><math>1.10-16</math><math>1.21-17</math><math>8.11-19</math><math>5.02-15</math><math>9.04-16</math><math>1.36-16</math><math>1.49-17</math><math>1.00-18</math><math>1.20-15</math><math>2.07-16</math><math>3.08-17</math><math>3.34-18</math><math>2.24-19</math><math>1.43-15</math><math>2.48-16</math><math>3.67-17</math><math>3.98-18</math><math>2.67-19</math><math>2.32-16</math><math>3.94-17</math><math>5.81-18</math><math>6.30-19</math><math>4.23-20</math><math>2.70-16</math><math>4.59-17</math><math>6.76-18</math><math>7.33-19</math><math>4.92-20</math><math>6.54-15</math><math>3.16-15</math><math>1.5-15</math><math>2.65-16</math><math>3.85-17</math><math>6.99-15</math><math>2.76-15</math><math>7.62-16</math><math>1.32-16</math><math>1.38-17</math><math>1.38-14</math><math>4.88-15</math><math>1.21-15</math><math>1.87-16</math><math>1.71-17</math><math>1.04-14</math><math>2.70-15</math><math>5.06-16</math><math>6.19-17</math><math>4.45-18</math><math>1.48-14</math><math>3.76-15</math><math>6.91-16</math><math>8.36-17</math><math>5.95-18</math><math>7.31-15</math><math>1.48-15</math><math>2.35-16</math><math>2.62-17</math><math>1.78-18</math><math>9.49-15</math><math>1.91-15</math><math>3.03-16</math><math>3.38-17</math><math>2.29-18</math><math>3.19-15</math><math>5.75-16</math><math>8.67-17</math><math>9.47-18</math><math>6.37-19</math><math>3.95-15</math><math>7.11-16</math><math>1.07-16</math><math>1.17-17</math><math>7.86-19</math><math>1.20-15</math><math>2.08-16</math><math>3.08-17</math><math>3.34-18</math><math>2.24-19</math><math>1.44-15</math><math>2.48-16</math><math>3.68-17</math></th></th1.2<></th1.24-14<></th1.24-14<> | 1.58-14 $4.09-15$ $7.66-16$ $9.38-17$ $6.73-18$ $2.23-14$ $5.68-15$ $1.05-15$ $1.26-16$ $9.00-18$ $1.06-14$ $2.13-15$ $3.39-16$ $3.79-17$ $2.57-18$ $1.37-14$ $2.76-15$ $4.38-16$ $4.88-17$ $3.30-18$ $4.07-15$ $7.33-16$ $1.10-16$ $1.21-17$ $8.11-19$ $5.02-15$ $9.04-16$ $1.36-16$ $1.49-17$ $1.00-18$ $1.20-15$ $2.07-16$ $3.08-17$ $3.34-18$ $2.24-19$ $1.43-15$ $2.48-16$ $3.67-17$ $3.98-18$ $2.67-19$ $2.32-16$ $3.94-17$ $5.81-18$ $6.30-19$ $4.23-20$ $2.70-16$ $4.59-17$ $6.76-18$ $7.33-19$ $4.92-20$ $6.54-15$ $3.16-15$ $1.5-15$ $2.65-16$ $3.85-17$ $6.99-15$ $2.76-15$ $7.62-16$ $1.32-16$ $1.38-17$ $1.38-14$ $4.88-15$ $1.21-15$ $1.87-16$ $1.71-17$ $1.04-14$ $2.70-15$ $5.06-16$ $6.19-17$ $4.45-18$ $1.48-14$ $3.76-15$ $6.91-16$ $8.36-17$ $5.95-18$ $7.31-15$ $1.48-15$ $2.35-16$ $2.62-17$ $1.78-18$ $9.49-15$ $1.91-15$ $3.03-16$ $3.38-17$ $2.29-18$ $3.19-15$ $5.75-16$ $8.67-17$ $9.47-18$ $6.37-19$ $3.95-15$ $7.11-16$ $1.07-16$ $1.17-17$ $7.86-19$ $1.20-15$ $2.08-16$ $3.08-17$ $3.34-18$ $2.24-19$ $1.44-15$ $2.48-16$ $3.68-17$                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tab         1         1.48-11         8.23-12         2.69-12         2.69-13         2.69-13         2.69-13         2.69-14         2.31-14         2.31-14         3.51-14         3.71-14         3.51-14         3.71-14         3.51-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14         3.71-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.23-14         5.68-15         1.05-15         1.26-16         9.00-18           1.06-14         2.13-15         3.39-16         3.79-17         2.57-18           1.37-14         2.76-15         4.38-16         4.88-17         3.30-18           4.07-15         7.33-16         1.10-16         1.21-17         8.11-19           5.02-15         9.04-16         1.36-16         1.49-17         8.01-18           1.20-15         2.07-16         3.08-17         3.94-18         2.24-19           1.43-15         2.48-16         3.67-17         3.98-18         2.67-19           2.32-16         3.94-17         5.81-18         6.30-19         4.23-20           2.70-16         4.59-17         6.76-18         7.33-19         4.92-20           6.54-15         3.16-15         1.15-15         2.65-16         3.85-17           6.54-15         3.16-15         1.51-15         2.65-16         3.85-17           1.38-14         4.88-15         1.21-15         1.87-16         1.71-17           1.38-14         4.88-15         2.12-16         3.36-17         2.91-18           1.44-15         2.76-16         8.06-17         9.47-18         6.37-19           3.19-15 |
| T <sub>10</sub> 18.1-11         102-15         32.1-2         21.1-14         106-14         21.3-15         32.1-15           T <sub>20</sub> 23.8-11         102-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15         32.1-15 <td>1.06-14<math>2.13-15</math><math>3.39-16</math><math>3.79-17</math><math>2.57-18</math><math>1.37-14</math><math>2.76-15</math><math>4.38-16</math><math>4.88-17</math><math>3.00-18</math><math>4.07-15</math><math>7.33-16</math><math>1.10-16</math><math>1.21-17</math><math>8.11-19</math><math>5.02-15</math><math>9.04-16</math><math>1.36-16</math><math>1.49-17</math><math>1.00-18</math><math>1.20-15</math><math>2.07-16</math><math>3.08-17</math><math>3.98-18</math><math>2.24-19</math><math>1.43-15</math><math>2.48-16</math><math>3.67-17</math><math>3.98-18</math><math>2.67-19</math><math>2.32-16</math><math>3.94-17</math><math>5.81-18</math><math>6.30-19</math><math>4.23-20</math><math>2.70-16</math><math>4.59-17</math><math>6.76-18</math><math>7.33-19</math><math>4.92-20</math><math>6.54-15</math><math>3.16-15</math><math>1.5-15</math><math>2.65-16</math><math>3.85-17</math><math>6.99-15</math><math>2.76-15</math><math>7.62-16</math><math>1.32-16</math><math>1.38-17</math><math>1.38-14</math><math>4.88-15</math><math>1.21-15</math><math>1.87-16</math><math>1.71-17</math><math>1.48-14</math><math>2.70-15</math><math>5.06-16</math><math>6.19-17</math><math>4.45-18</math><math>1.48-14</math><math>2.76-15</math><math>6.91-16</math><math>8.36-17</math><math>5.95-18</math><math>7.1-15</math><math>1.48-15</math><math>2.35-16</math><math>2.62-17</math><math>1.78-18</math><math>9.49-15</math><math>1.91-15</math><math>3.03-16</math><math>3.81-17</math><math>2.9-18</math><math>3.19-15</math><math>5.75-16</math><math>8.67-17</math><math>9.47-18</math><math>6.37-19</math><math>3.95-15</math><math>7.11-16</math><math>1.07-16</math><math>1.71-17</math><math>7.86-19</math><math>1.94-15</math><math>2.88-16</math><math>3.88-17</math><math>3.99-18</math><math>2.68-19</math><math>3.85-16</math><math>6.55-17</math><math>9.65-18</math><math>1.05-18</math><math>7.01-20</math><math>4.48-16</math><math>7.62-17</math><math>1.12-17</math><math>1.22-18</math><math>8.16-20</math><math>4.48-16</math><math>7.62-17</math><math>1.12-17</math><t< td=""></t<></td>                                        | 1.06-14 $2.13-15$ $3.39-16$ $3.79-17$ $2.57-18$ $1.37-14$ $2.76-15$ $4.38-16$ $4.88-17$ $3.00-18$ $4.07-15$ $7.33-16$ $1.10-16$ $1.21-17$ $8.11-19$ $5.02-15$ $9.04-16$ $1.36-16$ $1.49-17$ $1.00-18$ $1.20-15$ $2.07-16$ $3.08-17$ $3.98-18$ $2.24-19$ $1.43-15$ $2.48-16$ $3.67-17$ $3.98-18$ $2.67-19$ $2.32-16$ $3.94-17$ $5.81-18$ $6.30-19$ $4.23-20$ $2.70-16$ $4.59-17$ $6.76-18$ $7.33-19$ $4.92-20$ $6.54-15$ $3.16-15$ $1.5-15$ $2.65-16$ $3.85-17$ $6.99-15$ $2.76-15$ $7.62-16$ $1.32-16$ $1.38-17$ $1.38-14$ $4.88-15$ $1.21-15$ $1.87-16$ $1.71-17$ $1.48-14$ $2.70-15$ $5.06-16$ $6.19-17$ $4.45-18$ $1.48-14$ $2.76-15$ $6.91-16$ $8.36-17$ $5.95-18$ $7.1-15$ $1.48-15$ $2.35-16$ $2.62-17$ $1.78-18$ $9.49-15$ $1.91-15$ $3.03-16$ $3.81-17$ $2.9-18$ $3.19-15$ $5.75-16$ $8.67-17$ $9.47-18$ $6.37-19$ $3.95-15$ $7.11-16$ $1.07-16$ $1.71-17$ $7.86-19$ $1.94-15$ $2.88-16$ $3.88-17$ $3.99-18$ $2.68-19$ $3.85-16$ $6.55-17$ $9.65-18$ $1.05-18$ $7.01-20$ $4.48-16$ $7.62-17$ $1.12-17$ $1.22-18$ $8.16-20$ $4.48-16$ $7.62-17$ $1.12-17$ <t< td=""></t<>                                                                                                                    |
| T <sub>1</sub> /2         239-11         135-11         73-84         247-12         230-12         230-12         230-14         231-44         237-14         231-44         237-14         231-44         237-14         231-44         237-14         231-44         237-14         231-44         237-14         231-44         237-14         231-44         237-14         231-44         237-14         231-44         237-14         231-14         231-14         231-14         231-14         231-14         231-14         231-14         231-14         231-14         231-14         231-15         231-14         231-15         231-14         231-15         231-14         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-14         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15         231-15<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.37-142.76-154.38-164.88-173.30-184.07-15 $7.33-16$ $1.10-16$ $1.21-17$ $8.11-19$ 5.02-15 $9.04-16$ $3.66-16$ $1.49-17$ $1.00-18$ $1.20-15$ $2.07-16$ $3.08-17$ $3.34-18$ $2.24-19$ $1.43-15$ $2.48-16$ $3.67-17$ $3.98-18$ $2.67-19$ $2.32-16$ $3.94-17$ $5.81-18$ $6.30-19$ $4.23-20$ $2.70-16$ $4.59-17$ $6.76-18$ $7.33-19$ $4.92-20$ $6.54-15$ $3.16-15$ $1.15-15$ $2.65-16$ $3.85-17$ $6.99-15$ $2.76-15$ $7.62-16$ $1.32-16$ $1.38-14$ $1.38-14$ $4.88-15$ $1.21-15$ $1.87-16$ $1.71-17$ $1.04+14$ $2.70-15$ $5.06-16$ $6.19-17$ $4.45-18$ $1.48-14$ $3.76-15$ $6.91-16$ $8.36-17$ $5.95-18$ $7.31-15$ $1.48-15$ $2.35-16$ $2.62-17$ $1.78-18$ $9.49-15$ $1.91-15$ $3.03-16$ $3.38-17$ $2.29-18$ $3.19-15$ $5.75-16$ $8.67-17$ $9.47-18$ $6.37-19$ $3.95-15$ $7.11-16$ $1.07-16$ $1.17-17$ $7.86-19$ $1.20-15$ $2.08-16$ $3.08-17$ $3.34-18$ $2.24-19$ $1.44-15$ $2.48-16$ $3.68-17$ $3.99-18$ $2.68-19$ $3.85-16$ $6.55-17$ $9.65-18$ $1.05-18$ $7.01-20$ $4.45-16$ $2.15-15$ $7.77-16$ $1.80-16$ $2.61-17$ $4.46-15$ $2.15-15$ $7.77-16$ $1.80-16$                                                                                                                                        |
| Tar.         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <td>4.07-15<math>7.33-16</math><math>1.10-16</math><math>1.21-17</math><math>8.11-19</math><math>5.02-15</math><math>9.04-16</math><math>1.36-16</math><math>1.49-17</math><math>1.00-18</math><math>1.20-15</math><math>2.07-16</math><math>3.08-17</math><math>3.34-18</math><math>2.24-19</math><math>1.43-15</math><math>2.48-16</math><math>3.67-17</math><math>3.98-18</math><math>2.67-19</math><math>2.32-16</math><math>3.94-17</math><math>5.81-18</math><math>6.30-19</math><math>4.23-20</math><math>2.70-16</math><math>4.59-17</math><math>6.76-18</math><math>7.33-19</math><math>4.92-20</math><math>6.54-15</math><math>3.16-15</math><math>1.15-15</math><math>2.65-16</math><math>3.85-17</math><math>6.99-15</math><math>2.76-15</math><math>7.62-16</math><math>1.32-16</math><math>1.38-17</math><math>1.38-14</math><math>4.88-15</math><math>1.21-15</math><math>1.87-16</math><math>1.71-17</math><math>1.04-14</math><math>2.70-15</math><math>5.06-16</math><math>6.19-17</math><math>4.45-18</math><math>1.48-14</math><math>3.76-15</math><math>6.91-16</math><math>8.36-17</math><math>5.95-18</math><math>7.31-15</math><math>1.48-15</math><math>2.35-16</math><math>2.62-17</math><math>1.78-18</math><math>9.49-15</math><math>1.91-15</math><math>3.03-16</math><math>3.38-17</math><math>2.29-18</math><math>3.19-15</math><math>5.75-16</math><math>8.67-17</math><math>9.47-18</math><math>6.37-19</math><math>3.95-15</math><math>7.11-16</math><math>1.07-16</math><math>1.17-17</math><math>7.86-19</math><math>1.20-15</math><math>2.08-16</math><math>3.08-17</math><math>3.34-18</math><math>2.24-19</math><math>1.44+15</math><math>2.48-16</math><math>3.68-17</math><math>3.99-18</math><math>2.68-19</math><math>3.85-16</math><math>6.55-17</math><math>9.65-18</math><math>1.05-18</math><math>7.01-20</math><math>4.46-15</math><math>2.15-15</math><math>7.77-16</math><math>1.80-16</math><math>2.61-17</math><math>4.78-15</math><math>1.88-15</math><math>5.20-16</math><math>8.98-17</math><math>9.42-18</math><math>9.47-15</math><math>3.34-15</math><math>8.28-16</math></td>                                                                                                                                                                                                                                                                                 | 4.07-15 $7.33-16$ $1.10-16$ $1.21-17$ $8.11-19$ $5.02-15$ $9.04-16$ $1.36-16$ $1.49-17$ $1.00-18$ $1.20-15$ $2.07-16$ $3.08-17$ $3.34-18$ $2.24-19$ $1.43-15$ $2.48-16$ $3.67-17$ $3.98-18$ $2.67-19$ $2.32-16$ $3.94-17$ $5.81-18$ $6.30-19$ $4.23-20$ $2.70-16$ $4.59-17$ $6.76-18$ $7.33-19$ $4.92-20$ $6.54-15$ $3.16-15$ $1.15-15$ $2.65-16$ $3.85-17$ $6.99-15$ $2.76-15$ $7.62-16$ $1.32-16$ $1.38-17$ $1.38-14$ $4.88-15$ $1.21-15$ $1.87-16$ $1.71-17$ $1.04-14$ $2.70-15$ $5.06-16$ $6.19-17$ $4.45-18$ $1.48-14$ $3.76-15$ $6.91-16$ $8.36-17$ $5.95-18$ $7.31-15$ $1.48-15$ $2.35-16$ $2.62-17$ $1.78-18$ $9.49-15$ $1.91-15$ $3.03-16$ $3.38-17$ $2.29-18$ $3.19-15$ $5.75-16$ $8.67-17$ $9.47-18$ $6.37-19$ $3.95-15$ $7.11-16$ $1.07-16$ $1.17-17$ $7.86-19$ $1.20-15$ $2.08-16$ $3.08-17$ $3.34-18$ $2.24-19$ $1.44+15$ $2.48-16$ $3.68-17$ $3.99-18$ $2.68-19$ $3.85-16$ $6.55-17$ $9.65-18$ $1.05-18$ $7.01-20$ $4.46-15$ $2.15-15$ $7.77-16$ $1.80-16$ $2.61-17$ $4.78-15$ $1.88-15$ $5.20-16$ $8.98-17$ $9.42-18$ $9.47-15$ $3.34-15$ $8.28-16$                                                                                                                                 |
| 7<br>2000107-11127-11127-11127-11240-12227-12127-12247-12247-13267-13267-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-15237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14237-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.02-15         9.04-16         1.36-16         1.49-17         1.00-18           1.20-15         2.07-16         3.08-17         3.34-18         2.24-19           1.43-15         2.48-16         3.67-17         3.98-18         2.67-19           2.32-16         3.94-17         5.81-18         6.30-19         4.23-20           2.70-16         4.59-17         6.76-18         7.33-19         4.92-20           6.54-15         3.16-15         1.15-15         2.65-16         3.85-17           6.99-15         2.76-15         7.62-16         1.32-16         1.38-17           1.38-14         4.88-15         1.21-15         1.87-16         1.71-7           1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           7.44         3.6-15         6.91-16         8.36-17         5.95-18           1.48-14         3.64-15         5.03-16         6.32-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15      |
| n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n         n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.20-15 $2.07-16$ $3.08-17$ $3.34-18$ $2.24-19$ $1.43-15$ $2.48-16$ $3.67-17$ $3.98-18$ $2.67-19$ $2.32-16$ $3.94-17$ $5.81-18$ $6.30-19$ $4.23-20$ $2.70-16$ $4.59-17$ $6.76-18$ $7.33-19$ $4.92-20$ $6.54-15$ $3.16-15$ $1.15-15$ $2.65-16$ $3.85-17$ $6.99-15$ $2.76-15$ $7.62-16$ $1.32-16$ $1.38-17$ $1.38-14$ $4.88-15$ $1.21-15$ $1.87-16$ $1.71-17$ $1.04-14$ $2.70-15$ $5.06-16$ $6.19-17$ $4.45-18$ $1.48-14$ $3.76-15$ $6.91-16$ $8.36-17$ $5.95-18$ $7.31-15$ $1.48-15$ $2.35-16$ $2.62-17$ $1.78-18$ $9.49-15$ $1.91-15$ $3.03-16$ $3.38-17$ $2.29-18$ $3.19-15$ $5.75-16$ $8.67-17$ $9.47-18$ $6.37-19$ $3.95-15$ $7.11-6$ $1.07-16$ $1.17-17$ $7.86-19$ $1.20-15$ $2.08-16$ $3.08-17$ $3.99-18$ $2.68-19$ $3.85-16$ $6.55-17$ $9.65-18$ $1.05-18$ $7.01-20$ $4.46-15$ $2.15-15$ $7.77-16$ $1.80-16$ $2.61-17$ $4.78-15$ $1.88-15$ $5.20-16$ $8.98-17$ $9.42-18$ $9.47-15$ $3.34-15$ $8.28-16$ $1.28-16$ $1.17-17$ $7.22-15$ $1.87-15$ $3.51-16$ $4.30-17$ $3.08-18$ $1.03-14$ $2.61-15$ $4.80-16$ $5.81-17$ $4.13-18$ $5.24-15$ $1.66-15$ $1.69-16$                                                                                                                                  |
| Thing         Lash I         Yabe I <thyabe i<="" th="">         Yabe I         <thyab i<="" th=""> <thyabe i<="" th="">         Yabe I</thyabe></thyab></thyabe>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.43-15         2.48-16         3.67-17         3.98-18         2.67-19           2.32-16         3.94-17         5.81-18         6.30-19         4.23-20           2.70-16         4.59-17         6.76-18         7.33-19         4.92-20           6.54-15         3.16-15         1.15-15         2.65-16         3.85-17           6.99-15         2.76-15         7.62-16         1.32-16         1.38-17           1.38-14         4.88-15         1.21-15         1.87-16         1.71-17           1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.24-15 |
| Tan.<br>Tan.<br>Tan.<br>Tan.<br>Tan.33:111.69-137.27-142.41-146.08-151.26-152.32-162.39-175.81-186.30-19Tan.<br>Tan.<br>Tan.<br>Tan.1.09-122.77-142.41-141.77-151.46-152.70-154.59-175.76-187.32-18Str.<br>Tan.<br>Tan.<br>Tan.<br>Tan.<br>Tan.1.09-130.09-131.09-130.09-130.09-130.27-151.69-150.27-161.52-161.22-161.23-16Str.<br>Tan.<br>Tan.<br>Tan.<br>Tan.1.09-120.09-130.10-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-130.09-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.32-16         3.94-17         5.81-18         6.30-19         4.23-20           2.70-16         4.59-17         6.76-18         7.33-19         4.92-20           6.54-15         3.16-15         1.15-15         2.65-16         3.85-17           6.99-15         2.76-15         7.62-16         1.32-16         1.38-17           1.38-14         4.88-15         1.21-15         1.87-16         1.71-17           1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           1.48-14         3.76-15         2.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15 |
| Theory         199-12         230-12         129-12         120-13         346-14         281-14         707-15         146-15         207-16         634-17         676-18         733-19           \$\$\mathbf{a}_2\$         182-12         106+12         507-13         336-13         109-13         101-13         641-14         222-14         114-16         654-15         316-15         752-16         237-12         236-15         236-15         752-16         236-15         752-16         236-16         316-15         326-15         336-13         108-13         551-13         316-13         136-13         286-14         284-14         731-15         186-15         326-16         336-17           \$\$\mathbf{a}_1         139-13         287-14         284-14         731-15         187-14         348-15         286-16         366-17         366-17         366-17         366-17         366-17         366-17         366-17         366-18         315-11         151-14         319-15         755-16         867-17         368-17         368-17         368-17         368-17         368-18         328-18         368-17         368-18         328-18         368-17         368-18         328-18         368-17         368-18         328-18 <td< td=""><td>2.70-16         4.59-17         6.76-18         7.33-19         4.92-20           6.54-15         3.16-15         1.15-15         2.65-16         3.85-17           6.99-15         2.76-15         7.62-16         1.32-16         1.38-17           1.38-14         4.88-15         1.21-15         1.87-16         1.71-17           1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.70-16         4.59-17         6.76-18         7.33-19         4.92-20           6.54-15         3.16-15         1.15-15         2.65-16         3.85-17           6.99-15         2.76-15         7.62-16         1.32-16         1.38-17           1.38-14         4.88-15         1.21-15         1.87-16         1.71-17           1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15 |
| ship         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.54-15         3.16-15         1.15-15         2.65-16         3.85-17           6.99-15         2.76-15         7.62-16         1.32-16         1.38-17           1.38-14         4.88-15         1.21-15         1.87-16         1.71-17           1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.46-15 |
| sp.         192-12         108-12         204-12         160-13         341-13         101-13         631-14         275-14         275-15         275-15         782-16         132-16           641_2         637-12         259-12         204-12         144-12         643-13         266-13         208-13         151-13         395-14         224-14         148-14         275-15         566-16         619-17           641_2         241-12         214-12         241-12         241-13         131-13         395-14         224-14         148-14         275-15         566-16         626-17           641_2         241-13         192-12         241-12         242-13         131-13         141-14         241-15         141-15         145-15         141-15         145-15         141-15         145-15         141-15         145-15         141-15         145-15         141-15         145-15         141-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-15         144-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.99-15         2.76-15         7.62-16         1.32-16         1.38-17           1.38-14         4.88-15         1.21-15         1.87-16         1.71-17           1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15 |
| sph_a         522-12         292-12         120-13         252-13         222-13         525-13         160-13         266-13         261-14         292-14         148-14         488-15         121-15         166-16         661-97           84 <sub>20</sub> 574-12         548-12         200-12         124-12         489-13         316-13         177-13         93-14         424-14         484-14         376-15         536-16         636-17           87 <sub>20</sub> 163-11         90-12         58-12         212-12         164-12         477-13         256-13         310-14         437-15         141-15         487-15         141-15         487-15         141-15         487-15         141-15         208-16         387-17         347-18           86 <sub>21</sub> 176-11         901-12         587-13         218-13         121-13         401-14         141-14         208-15         141-15         248-16         762-17         112-17         218-13         212-12         122-12         122-12         122-13         122-13         30-14         41-174         248-14         141-14         248-14         141-14         248-14         141-15         448-16         762-17         112-17         122-18         122-18         122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.38-14         4.88-15         1.21-15         1.87-16         1.71-17           1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15 |
| shore<br>shore<br>shore<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreconstraint<br>shoreshore<br>shore<br>shore<br>sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.04-14         2.70-15         5.06-16         6.19-17         4.45-18           1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         5.20-16         8.98-17         9.42-18           9.47-15         1.87-15         3.51-16         4.30-17         3.08-18           9.47-15 |
| ski_p         274-12         548-12         207-12         274-12         548-14         207-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-12         208-13         208-13         307-14         151-14         31-15         57.5-16         151-14         31-15         57.5-16         151-14         31-15         30.5-16         308-12         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14         30.5-14 <td>1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.4415         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15&lt;</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.48-14         3.76-15         6.91-16         8.36-17         5.95-18           7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.4415         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15< |
| 91123-11193-12123-12121-12122-12122-12122-12123-12123-13123-14244-14124-15134-15233-16245-17135-1386/12141-11196-12231-12231-12140-12760-13366-13207-14151-14319-15575-16867-17947-1886/12171-11602-12339-12190-12174-12945-13209-13715-14877-14120-15208-16308-17339-1886/12128-12405-12227-12125-12654-13306-13115-13330-14745-15143-15248-16368-17339-1886/12328-12248-12329-12255-13257-13241-13121-1341-14140-1464-15446-15247-17122-1887/12328-1228-12135-1275-13327-1314-13436-14140-1484-15446-15247-17122-1887/1228-1228-12135-1370-14431-1424-1426-14430-15446-15247-17122-1887/1228-1228-12135-1314-13136-13136-14246-1426-14136-1424-1487/1228-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-1428-14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.31-15         1.48-15         2.35-16         2.62-17         1.78-18           9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                   |
| $\hat{Y}_{12}$ 163-11         92-12         164-12         91-14-1         49-13         255-13         110-13         271-14         49-15         10-15         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-16         303-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.49-15         1.91-15         3.03-16         3.38-17         2.29-18           3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                     |
| spin         141-11         79-51         244-12         22-12         140-12         7.80-13         368-13         5.77-14         151-14         319-15         5.75-16         8.87-17         9.47-18           8gan         17-11         602-12         339-12         190-12         1.41-12         2.57-13         2.67-13         2.66-13         0.64-14         2.76-14         6.24-15         1.20-15         2.08-16         3.08-17         3.39-18           8h112         2.82-12         1.24-12         1.02-12         2.57-13         2.81-13         1.01-14         1.01-14         2.04-15         2.85-16         6.56-17         6.56-18         0.86-17         0.57-16         0.86-17         0.57-16         0.86-17         0.57-16         0.86-17         0.57-16         0.86-17         0.57-16         0.86-17         0.57-16         0.86-17         0.82-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17         1.22-17 <th1.22-17< th=""> <th1.22-17< <="" td=""><td>3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18</td></th1.22-17<></th1.22-17<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.19-15         5.75-16         8.67-17         9.47-18         6.37-19           3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                       |
| Sense         1.76-11         9.91-12         5.81-12         3.17-12         4.94-13         2.96-13         2.06-13         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15         2.04-15 <th2.01< th=""> <th2.04< th=""> <th2.04-15< <="" td=""><td>3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18</td></th2.04-15<></th2.04<></th2.01<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.95-15         7.11-16         1.07-16         1.17-17         7.86-19           1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                         |
| Num<br>5107-11602-12303-12100-12104-12547-13256-13964-14276-14627-14628-15120-15288-16288-17398-185811/2588-12382-12215-12210-12649-13312-13141-13466-14101-14208-15148-16712-17122-18811/2678-12382-12275-13242-13239-13135-1370.014431-14245-14140-14245-15448-167.62-171.12-17122-1891/2208-121.72-1261.133.72-1321.0144.41-142.61-141.58-142.01-142.72-151.87-153.51-164.30-1791/220.8122.78-122.83-122.78-121.87-133.22-132.12-136.21-142.01-142.01-151.88-153.34-155.20-165.81-1791/22.83-122.78-122.87-128.80-133.22-133.12-133.12-134.11-142.72-151.87-153.51-164.30-1791/22.33-122.78-122.87-128.80-133.23-133.12-134.11-122.22-161.89-173.60-142.99-141.61-143.07-155.53-168.61-164.89-1791/21.10-116.58-127.71-122.88-133.73-133.73-133.61-132.56-141.46-143.07-155.53-168.71-1691/21.10-116.58-127.71-122.88-123.73-133.61-133.53-141.61-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.20-15         2.08-16         3.08-17         3.34-18         2.24-19           1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                                                                                                           |
| nn<br>nn<br>51.28+117.21+124.05-122.27-121.25-126.54-133.06-131.15-133.01-147.01+142.04-153.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-173.65-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-171.21-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.44-15         2.48-16         3.68-17         3.99-18         2.68-19           3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NumberSAB-12SAB-12SAB-12SAB-12SAB-12SAB-12SAB-12SAB-14SAB-16SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-17SAB-16SAB-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.85-16         6.55-17         9.65-18         1.05-18         7.01-20           4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sing<br>10678-12312-12215-12120-12649-13327-13141-13466-14117-14243-14154-16702-17112-17122-1830121,35-137,52-134,42-132,39-131,35-137,71-144,44-142,61-141,58-149,29-154,78-151,88-155,20-168,98-1791232,09-122,49-121,41-127,92-132,10-131,19-136,77-143,83-142,05-149,21-151,81-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-153,14-154,14-141,14-142,14-151,14-153,14-154,14-151,14-143,14-154,14-151,14-143,14-154,14-151,14-154,14-151,14-154,14-151,14-153,14-161,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-141,14-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.48-16         7.62-17         1.12-17         1.22-18         8.16-20           4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3n<br>3n<br>3n134-12723-13132-1370-14431-14246-14140-14804-1524.6-15215-157.77-1618.0-163p1/23.05-127.78-132.41-131.36-137.71-144.44-142.61-141.58-149.29-154.78-151.88-155.20-168.98-173p1/22.09-122.09-121.17-126.61-133.72-132.10-131.15-136.77-143.83-142.00-147.20-151.87-153.81-164.30-173p1/22.38-122.38-122.16-121.22-126.86-133.81-121.15-136.01-142.04-142.04-151.06-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-151.80-15 <td>4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.46-15         2.15-15         7.77-16         1.80-16         2.61-17           4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| pppp135-127.58-134.27-132.41-131.36-137.71-144.44-142.61-141.58-142.06-149.47-151.88-155.20-168.88-17pp3.69-122.08-121.01-120.61-133.72-132.53-131.54-138.25-144.45-142.06-149.47-151.88-155.20-168.28-161.28-16de/24.38-122.49-121.41-127.22-134.47-132.53-131.52-136.52-142.06-141.01-142.61-154.30-17de/22.43-122.43-122.32-128.80-133.28-131.38-130.12-142.61-144.01-142.41-152.14-166.16-123/7_22.43-122.08-121.01-126.53-133.38-131.31-131.43-131.46-143.07-155.35-166.34-177.00-183/7_27.01-123.04-121.01-123.37-131.01-131.01-131.63-135.56-141.46-143.07-155.34-166.75-177.00-183/7_27.70-122.40-121.01-122.37-133.21-131.01-131.61-132.55-151.01-162.70-171.00-173/1_27.70-122.40-123.10-133.27-131.61-133.20-141.01-145.70-153.10-153.10-133/1_26.61-133.21-133.21-141.01-145.71-166.70-171.01-171.01-163/1_27.70-122.43-122.44-123.21-133.21-141.01-14 <t< td=""><td>4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.78-15         1.88-15         5.20-16         8.98-17         9.42-18           9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| part<br>part<br>part<br>part3.60-122.02-121.17-126.61-133.27-132.10-131.19-136.77-143.83-142.06-149.47-153.34-158.28-161.28-16day<br>part<br>part<br>part1.66-123.83-122.16-121.22-126.86-133.88-132.11-131.25-136.62-142.06-149.47-157.36-154.80-154.30-17dy<br>part8.76-122.83-122.76-121.57-122.86-133.88-132.21-131.25-136.01-142.04-145.24-151.06-151.89-162.48-17dy<br>part1.16-116.56-123.44-121.77-128.70-122.87-131.82-138.60-144.40-144.41-154.41-167.01-152.18-162.43-177.36-18dy<br>part1.16-116.56-123.41-123.41-121.36-133.73-131.61-133.56-141.46-142.46-151.08-152.36-162.46-173.00-18dy<br>part3.77-123.77-123.77-123.77-123.77-123.77-123.77-123.77-123.77-134.91-132.07-133.66-142.48-142.66-143.81-153.16-153.16-163.76-173.76-18dy<br>part3.77-133.99-145.67-133.67-133.57-131.61-133.57-141.37-143.48-153.16-153.76-163.41-151.31-152.31-163.16-17dy<br>part5.57-133.14-131.77-139.99-145.67-133.67-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.47-15         3.34-15         8.28-16         1.28-16         1.17-17           7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| May<br>May<br>May<br>May<br>May(A3-12)(A49-12)(A1-12)(A2-13)(A2-13)(A2-13)(A2-14)(A2-14)(A2-14)(A2-15)(A7-15)(A1-15)(A1-16)(A3-16)(A3-16)(A3-17)May<br>May<br>May<br>May<br>May<br>May(A3-11)(A3-12)(A3-12)(A3-12)(A3-12)(A3-12)(A3-12)(A3-13)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3-14)(A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.22-15         1.87-15         3.51-16         4.30-17         3.08-18           1.03-14         2.61-15         4.80-16         5.81-17         4.13-18           5.24-15         1.06-15         1.69-16         1.89-17         1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| May<br>May<br>May<br>May<br>May6.80-123.83-122.16-121.22-126.86-133.88-132.21-131.25-136.62-142.89-141.03-142.61-154.80-165.81-17May<br>May<br>May8.76-122.49-122.78-121.57-122.80-131.52-133.88-131.60-142.60+145.24-151.06-151.69-161.89-17May<br>May1.10-116.58-123.48-121.77-122.97-133.00-131.13-134.49-141.46-142.46-155.31-168.24-179.10-18May<br>May0.61-155.40-123.44-121.37-127.35-133.03-131.66-142.48-145.60-151.48-151.76-158.38-162.76-173.00-18May<br>May3.76-123.76-123.76-131.61-133.55-141.16-142.39-155.13-168.27-171.20-18May<br>May7.77-123.77-122.46-121.37-139.57-131.61-133.55-141.35-141.36-153.14-153.40-166.81-17May<br>May2.77-121.57-128.66-133.77-131.61-133.55-141.35-141.36-153.41-151.30-155.51-166.31-17May<br>May2.77-121.57-128.66-133.67-133.57-141.57-153.31-151.53-165.31-161.20-17May<br>May2.77-121.57-128.67-133.77-131.61-133.57-141.35-143.31-153.41-151.57-153.51-163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.03-14 2.61-15 4.80-16 5.81-17 4.13-18<br>5.24-15 1.06-15 1.69-16 1.89-17 1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\hat{f}_{1/2}$ 8.76-124.87-122.78-121.77-128.80-134.92-131.38-136.10-142.04-145.24-151.06-151.59-161.89-17 $\hat{f}_{1/2}$ 1.16-116.51-233.70-122.08-121.07-126.53-133.58-137.91-142.06-146.81-151.37-152.18-162.43-177.36-13 $\hat{g}_{1/2}$ 1.07-116.81-122.43-122.33-127.35-133.73-131.63-135.56-141.46-142.48-156.75-158.34-173.08-13 $\hat{g}_{1/12}$ 1.15-116.47-123.64-122.04-121.12-125.81-318.71-313.73-131.63-135.57-141.46-142.49-152.22-163.00-173.58-18 $\hat{g}_{1/12}$ 1.15-116.47-123.64-122.04-121.12-125.81-313.73-131.01-133.29-141.04-132.97-144.86-151.29-152.22-163.01-173.58-18 $\hat{g}_{1/12}$ 1.15-124.67-133.22-133.75-131.10-133.57-141.10-142.39-142.10-142.39-155.11-168.72-171.29-171.39-18 $\hat{g}_{1/12}$ 3.85-133.13-131.77-139.95-145.62-143.18-141.01-141.01-146.65-153.18-151.31-155.1-166.72-171.69-17 $\hat{g}_{1/2}$ 2.77-121.51-128.66-133.85-133.67-133.59-143.27-144.80-142.77-144.81-147.71-53.81-153.71-64.20-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.24-15 1.06-15 1.69-16 1.89-17 1.28-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\overline{D}_{7/2}$ 1.16-116.56-123.70-122.08-121.71-126.53-133.58-131.82-137.91-142.66-146.81-151.37-152.18-162.43-17 $\overline{B}_{7/2}$ 1.10-111.81-123.44-122.43-121.31-123.00-131.31-134.44-141.81-142.48-154.48-166.75-177.36-18 $\overline{B}_{7/2}$ 1.70-123.04-121.70-129.37-134.91-132.30-138.66-142.48-143.07-155.36-164.44-143.07-155.36-164.44-163.07-153.86-162.48-15 $\overline{B}_{11/2}$ 6.71-23.76-122.11-211.81-125.88-132.07-133.95-141.16-142.39-155.11-167.27-171.29-171.39-18 $\overline{B}_{11/2}$ 7.77-123.77-122.47-122.11-211.81-215.52-143.18-133.55-141.55-133.51-161.27-161.27-171.39-18 $\overline{B}_{11/2}$ 5.56-133.11-313.77-139.99-145.62-143.18-131.07-135.99-143.29-141.48-145.21-155.1-161.27-161.29-15 $\overline{B}_{12/2}$ 3.81-133.11-133.67-133.59-143.29-143.29-143.29-143.29-143.29-143.29-143.29-143.29-153.11-153.41-153.10-153.40-1 $\overline{B}_{12/2}$ 3.81-133.11-133.61-133.59-143.29-143.29-143.29-143.29-143.29-153.11-153.11-153.11-153.11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 387.21.10-116.18-123.48-121.36-121.09-125.09-123.00-131.31-134.94-141.81-142.48-155.48-166.75-177.36-18387.01.37-117.50-115.50-142.40-122.40-121.35-127.35-133.73-131.63-135.56-141.48-142.48-155.40-151.86-162.76-173.00-18391.125.40-123.64-122.44-121.20-123.82-133.22-131.04-132.37-146.68-151.29-152.12-162.30-173.30-133.75-131.04-132.37-146.68-151.29-153.18-167.40-171.20-18391.127.77-124.37-122.46-121.37-139.95-145.27-141.81-141.80-141.01-145.76-153.18-151.51-155.51-161.27-168.88-131091.29.86-135.55-133.14-131.77-139.95-145.25-141.81-141.80-141.14-144.65-153.18-151.35-155.51-161.27-161091.22.73-121.54-133.14-132.75-131.61-133.27-141.81-141.80-141.14-144.86-141.71-141.80-171091.22.73-121.54-122.75-121.61-133.25-131.61-133.27-131.61-133.27-141.48-143.21-151.41-133.21-151.41-133.21-151.41-133.21-151.41-133.21-151.41-133.21-151.41-133.21-151.41-133.21-151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01-13 1.37-13 2.10-10 2.43-17 1.04-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 137-117.69-124.34-122.43-121.35-127.35-133.73-131.63-135.56-141.46-143.07-155.53-168.34-179.10-18 $y_{h12}$ 0.50-123.04-123.04-121.07-129.37-134.91-132.30-138.66-142.44-145.06-151.08-151.28-162.22-163.00-173.58-18 $y_{h112}$ 1.51-164.77-124.34-121.28-125.83-133.22-131.38-131.36-143.59-141.16-142.39-154.41-167.49-171.00-171.20-18 $y_{h12}$ 7.77-124.37-122.46-121.37-127.44+133.72-131.51-131.51-135.55-161.27-163.18-151.31-151.51-151.51-155.51-161.27-16 $y_{102}$ 9.86-135.55-133.14-111.77-139.99-145.62-143.18-141.80-141.01-145.76-153.18-151.31-155.37-166.38-17 $y_{02}$ 2.73-121.54-133.55-133.67-133.25-141.90-141.14-146.66-153.41-151.39-153.47-164.30-17 $y_{02}$ 2.73-121.54-133.55-133.67-133.55-133.67-144.90-141.14-146.71-148.81-152.91-153.91-162.91-16 $y_{02}$ 2.73-121.51-128.61-133.63-133.67-133.51-143.51-141.51-153.51-161.27-163.81-17 $y_{02}$ 2.73-121.51-128.51-133.63-13 <td>2.48-15 4.48-16 6.75-17 7.36-18 4.95-19</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.48-15 4.48-16 6.75-17 7.36-18 4.95-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mm<br>mp9.60-125.40-125.40-120.40-121.70-129.37-134.91-132.30-138.66-142.48-145.60-151.08-151.86-162.76-173.00-173.58-189h11/26.71-23.64-122.11-121.12-125.88-132.75-131.04-132.79-146.88-151.21-157.11-167.49-171.01-171.20-189h31/20.86-135.55-133.13-131.77-139.95-145.62-141.81-141.81-142.78-155.13-168.72-171.20-189.86-135.55-133.14-131.77-139.95-145.66-143.25-141.90-141.14-146.65-153.41-151.34-155.91-161.27-16100 <sub>1/2</sub> 2.83-121.54-128.66-134.88-132.75-131.55-138.76-144.95-142.77-141.48-146.71-151.39-155.92-169.16-17100 <sub>3/2</sub> 2.32-121.54-128.66-133.82-131.65-133.90-144.80-141.61-144.80-142.16-147.42-151.89-153.47-164.20-17100 <sub>3/2</sub> 6.46-122.79-121.57-128.88-133.11-131.85-133.65-131.30-135.86-141.16-143.88-157.84-162.79-175.61-1100 <sub>1/2</sub> 6.40-122.48-122.79-121.57-128.86-133.65-131.30-133.51-144.80-149.01-151.94-153.30-165.28-177.12-18100 <sub>1/2</sub> 6.60-124.84-122.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Defining<br>115-111.15-116.47-123.64-122.04-121.12-125.88-132.75-131.04-132.97-146.68-151.29-152.22-163.30-173.58-18Bining<br>19726.67-123.77-122.11-121.18-126.39-133.22-131.38-134.59-141.15-142.39-154.11-167.49-171.10-171.20-181051/29.86-135.55-133.14-131.77-139.95-145.62-143.18-141.85-141.01-145.76-153.18-151.53-155.51-167.21-171.29-171.39-181051/29.86-135.56-133.14-131.77-139.95-145.62-143.18-141.00-141.14-146.65-153.14-151.34-155.91-166.29-171.29-166.38-171051/28.86-125.61-126.06-133.25-131.87-138.76-143.27-148.29-142.71-141.48-146.72-151.39-155.92-169.16-171051/28.36-122.97-121.57-128.88-135.01-132.35-131.61-133.07-144.80-142.16-147.44-153.30-162.32-176.16-171065/28.67-122.97-121.57-128.88-135.01-132.32-131.03-133.61-143.72-144.80-152.04-153.01-153.20-165.21-15.16-13.10-163.21-171065/28.86-122.79-128.86-122.79-128.86-132.32-133.61-133.21-133.21-133.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.67-126.67-127.76-127.16-127.16-127.18-127.18-127.18-127.18-127.18-127.18-127.18-137.18-137.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-147.18-14 <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 997.7-124.37-122.46-121.37-127.44-133.75-131.61-135.35-141.55-142.78-155.13-168.72-171.29-171.39-181099.86-135.55-133.14-131.77-139.95-145.62-143.18-141.80-141.01-145.76-153.18-151.31-153.70-166.38-171092.73-121.54-128.66-134.88-132.75-131.55-138.76-144.90-141.14-146.65-153.14-151.33-155.23-163.10-171092.22-121.81-121.02-125.76-133.25-131.84-131.05-135.99-143.23-141.48-145.21-151.35-155.23-164.00-171092.64-122.95-121.51-128.88-135.01-132.35-131.61-139.07-144.80-141.51-143.88-157.84-161.25-164.20-17107.28.66-124.85-122.73-121.55-128.61-134.84-132.65-133.13-135.61-41.91-145.04-155.04-168.20-177.12-181098.52-124.65-122.65-122.65-121.61-128.60-134.84-132.35-131.35-135.61-141.37-133.51-149.20-151.61-163.20-177.12-181097.28.55-123.61-121.61-129.61-133.61-133.21-131.21-131.35-135.61-141.31-152.34-151.31-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1001/29.86-135.55-133.13-131.77-139.95-145.62-143.18-141.07-141.67-153.18-151.53-155.51-161.27-1610p1/22.88-135.56-133.14-131.77-139.99-145.66-143.25-141.90-141.14-146.65-153.11-151.34-153.70-166.38-1710p3/22.73-121.54-128.66-133.25-131.55-138.75-144.95-142.71-141.48-145.21-151.35-155.92-169.16-1710p3/24.96-122.79-121.57-128.88-135.01-132.83-131.61-139.07-144.80-142.16-147.42-151.88-153.47-164.20-1710p5/26.46-122.05-121.54-128.66-134.84-132.65-131.35-135.86-141.97-145.04-151.02-151.61-161.80-1710p7/28.58-124.84-122.73-121.54-128.66-134.84-132.65-131.35-133.51-149.20-151.94-153.01-165.26-177.12-1810p1/28.52-124.52-122.62-121.47-128.66-133.21-131.83-137.45-142.11-142.40-154.33-166.52-177.12-1810p1/28.72-124.55-143.13-137.45-142.31-144.80-159.26-161.60-162.71-77.2-1810p1/26.61-123.73-121.62-133.73-131.60-133.73-131.60-142.51-141.51-143.81-67.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1009.88-135.56-133.14-131.77-139.99-145.66-143.25-141.90-141.14-146.65-153.41-151.34-153.70-166.38-171002.73-121.54-128.66-134.88-132.75-131.55-138.76-142.77-141.48-146.79-152.39-155.92-155.91-671003.22-121.81-121.02-125.76-133.25-131.84-131.05-135.99-143.23-141.48-145.21-151.89-153.47-164.20-171064.96-122.79-121.57-128.88-135.01-132.83-131.05-139.07-144.45-141.51-143.88-157.84-161.25-161.39-171064.96-123.64-122.05-121.61-126.50-133.63-131.02-134.51-133.56-141.91-141.60-151.02-151.61-161.80-17107/28.58-124.84-122.73-121.53-128.56-133.25-131.03-133.56-141.14-142.04-151.02-155.66-161.65-162.87-177.12-181089/21.07-116.02-123.40-121.00-123.40-121.00-123.40-122.65-131.33-134.56-141.14-142.40-154.30-152.62-161.60-162.37-177.12-181011/28.52-124.65-123.31-121.00-123.40-132.37-133.51-149.20-155.10-166.66-171.0-171.10-141011/28.52-123.60-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10022.73-121.54-128.66-134.88-132.75-131.55-138.76-144.95-142.77-141.48-146.79-152.39-155.92-169.16-1710dy23.22-121.81-121.02-125.76-133.25-131.84-131.05-135.97-141.82-141.48-145.21-151.55-152.53-163.10-1710dy24.96-122.97-121.67-128.88-135.01-132.83-131.61-139.07-144.80-142.16-147.42-151.89-153.47-164.20-1710fy26.46-123.64-122.05-121.16-126.00-133.63-131.99-131.02-134.80-142.16-147.42-151.89-151.80-153.10-1710fy28.68-124.84-122.73-121.53-128.53-134.63-132.35-131.35-135.66-141.97-145.04-151.02-155.01-166.52-177.72-1810g921.07-116.02-123.04-121.91-128.06-134.23-131.98-137.45-141.31-144.80-159.61-161.60-162.37-172.57-1810g1126.61-123.31-121.70-128.05-133.21-131.80-134.50-141.31-144.80-159.61-161.60-162.37-173.07-1810g1126.61-123.31-121.37-133.01-133.71-141.31-144.80-159.61-151.00-163.31-161.60-163.31-1610g1127.72-144.55-123.31-131.60-13<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10d <sub>3/2</sub> 3.22-12         1.81-12         1.02-12         5.76-13         3.25-13         1.84-13         1.05-13         5.99-14         3.23-14         1.48-14         5.21-15         1.35-15         2.53-16         3.10-17           10d <sub>5/2</sub> 4.96-12         2.79-12         1.57-12         8.88-13         5.01-13         2.83-13         1.61-13         9.07-14         4.80-14         2.16-14         7.42-15         1.89-15         3.47-16         4.20-17           10f <sub>5/2</sub> 6.46-12         2.64-12         2.64-12         2.64-12         2.65-12         1.51-12         8.60-13         3.51-13         5.86-14         1.51-14         3.80-15         5.80-16         5.28-17         5.67-18           10g <sub>7/2</sub> 8.58-12         4.84-12         2.73-12         1.61-12         8.06-13         4.23-13         1.80-13         3.51-14         9.20-15         1.91-15         5.91-16         2.83-17         3.07-18           10g <sub>1/2</sub> 8.52-12         4.65-12         3.10-12         1.67-12         8.06-13         3.73-13         8.91-14         2.13-14         4.80-15         9.40-15         4.33-16         6.21-17         7.12-18           10g <sub>1/1/2</sub> 6.512         3.73-12         1.66-13         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10ds/2<br>10fs/24.96-122.79-121.57-128.88-135.01-132.83-131.61-139.07-144.80-142.16-147.42-151.89-153.47-164.20-1710fs/2<br>10fs/26.64-122.05-121.16-126.50-133.63-131.99-131.02-134.45-141.51-143.88-157.84-161.25-161.39-1710fr/2<br>10fs/28.85-124.84-122.73-121.53-128.66-134.84-132.65-131.03-133.51-149.20-151.94-153.50-165.28-177.76-1810g9/2<br>10g1/2107-116.02-123.40-121.91-121.06-125.76-132.93-131.27-134.36-141.14-142.40-154.33-166.52-177.12-1810b1/2<br>10g1/29.56-122.62-121.47-128.06-135.06-132.37-138.91-142.57-145.14-151.11-151.91-162.83-177.07-1810h1/2<br>10g1/29.56-122.62-121.47-128.06-133.73-131.38-134.56-141.15-142.37-154.38-167.44-171.10-171.19-1810h1/2<br>10g1/29.55-123.31-131.35-137.60-144.21-141.35-147.68-154.27-155.10-168.66-171.28-171.38-1811f1/2<br>11/27.52-134.24-132.39-131.35-137.60-144.21-141.35-147.69-155.10-168.66-171.28-171.38-1811f1/2<br>11/27.52-134.24-132.39-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100         5/2         6.46-12         3.64-12         2.05-12         1.16-12         6.50-13         3.63-13         1.99-13         1.02-13         4.45-14         1.51-14         3.88-15         7.84-16         1.25-16         1.39-17           107 <sub>7/2</sub> 8.60-12         4.85-12         2.73-12         1.54-12         8.66-13         4.84-13         2.65-13         1.35-13         5.86-14         1.97-14         5.04-15         1.02-15         1.04-15         5.02-16         1.61-16         1.80-17           0.80 <sub>9/2</sub> 1.07-11         6.02-12         1.47-12         8.06-13         4.23-13         1.98-13         7.45-14         2.13-14         4.80-15         9.26-16         1.60-16         2.37-17         2.57-18           0.00 <sub>1/2</sub> 5.66-12         3.13-12         1.76-12         8.06-13         3.21-13         1.38-13         4.56-14         1.51-14         2.37-15         4.38-16         7.44-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17         1.10-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 107-116.02-123.40-121.91-121.06-125.76-132.93-131.27-134.36-141.14-142.40-154.33-166.52-177.12-1810b <sub>9/2</sub> 8.25-124.65-122.62-121.47-128.06-134.23-131.98-137.45-142.13-144.80-159.26-161.60-162.37-172.57-1810i1/26.37-125.56-123.13-121.76-129.66-135.06-132.37-138.91-142.55-145.74-151.11-151.91-162.83-173.07-1810i1/26.37-122.43-122.45-121.37-126.35-133.21-131.85-134.56-141.51-142.37-154.38-167.44-171.10-171.19-18115/27.52-134.24-132.39-131.35-137.60-144.28-142.41-141.35-147.58-154.27-152.34-151.12-154.05-169.55-17119/27.50-134.23-132.39-131.35-137.60-144.30-142.46-141.43-148.46-154.93-152.52-159.00-162.73-164.70-17119/22.08-121.17-126.61-133.79-132.10-131.81-136.52-143.73-142.08-141.10-143.88-151.01-151.89-162.31-171119/22.08-121.17-126.61-133.79-132.14-131.29-136.30-141.60-145.41-151.61-162.37-161.31-171119/22.08-121.56-128.79-133.79-132.14-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10163/28.25-124.65-122.62-121.47-128.06-134.23-131.98-137.45-142.13-144.80-159.26-161.60-162.37-172.57-181011/26.63-123.73-122.10-121.71-126.35-133.21-131.38-134.56-141.15-142.37-154.38-167.44-171.10-171.19-181011/26.63-123.73-122.10-121.37-127.40-133.73-131.60-135.32-141.34-142.76-155.10-168.66-171.28-171.38-181111/27.52-134.24-132.39-131.35-137.60-144.28-142.41-141.35-147.58-154.27-152.34-151.12-154.05-169.35-171111/27.50-134.23-132.39-131.35-137.60-144.28-142.41-141.35-147.58-154.27-152.34-151.12-154.05-169.35-171111/27.50-134.23-132.39-131.35-137.60-144.28-142.41-141.35-147.85-154.27-152.34-151.12-154.05-169.35-171111/27.50-134.23-132.39-131.35-137.60-144.30-132.37-172.52-159.00-162.77-154.38-166.77-171113/22.44-121.36-121.71-16.65-133.73-132.10-131.71-16.65-133.73-132.10-131.31-136.65-143.31-141.01-143.88-151.01-151.80-162.37-171.31-17 <th< td=""><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1011/2<br>1011/26.63-123.73-122.10-121.17-126.35-133.21-131.38-134.56-141.15-142.37-154.38-167.44-171.10-171.19-181013/2<br>13/27.72-124.35-122.45-121.37-127.40-133.73-131.60-135.32-141.34-142.76-155.10-168.66-171.28-171.38-18113/127.52-134.24-132.39-131.35-137.60-144.28-142.41-141.35-147.58-154.27-152.34-151.12-154.05-169.35-17113/127.50-134.23-132.39-131.35-137.60-144.30-142.46-141.43-148.46-154.93-152.52-159.90-162.73-164.70-17113/22.08-121.17-126.61-133.73-132.10-131.18-136.65-143.73-142.08-141.10-145.03-151.77-154.38-166.77-17113/22.08-121.17-126.61-133.79-132.10-131.18-136.65-143.73-142.08-141.10-143.08-151.01-151.89-162.31-17113/22.42-121.36-127.69-134.34-132.45-131.39-137.92-144.49-142.41-141.10-143.88-151.01-151.89-162.31-17113/22.42-121.36-127.69-133.79-132.14-131.21-136.62-143.60-141.61-142.94-155.91-163.50-161.51-17115/24.90-122.76-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2p <sub>1/2</sub> 5.86-13 3.31-13 1.87-13 1.05-13 5.94-14 3.36-14 1.91-14 1.10-14 6.47-15 3.75-15 1.91-15 7.52-16 2.07-16 3.57-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| * */2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $2p_{3/2}$ 1.63-12 9.18-13 5.19-13 2.93-13 1.65-13 9.25-14 5.18-14 2.89-14 1.59-14 8.39-15 3.82-15 1.35-15 3.32-16 5.14-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| hell _                        | $\log_{10} T(K$ | .)                 |         |         |         |         |         |         |         |                    |         |         |         |         |        |
|-------------------------------|-----------------|--------------------|---------|---------|---------|---------|---------|---------|---------|--------------------|---------|---------|---------|---------|--------|
|                               | 3.0             | 3.5                | 4.0     | 4.5     | 5.0     | 5.5     | 6.0     | 6.5     | 7.0     | 7.5                | 8.0     | 8.5     | 9.0     | 9.5     | 10.0   |
| 2d <sub>3/2</sub>             | 1.87-12         | 1.06-12            | 5.96-13 | 3.37-13 | 1.90-13 | 1.08-13 | 6.12-14 | 3.46-14 | 1.85-14 | 8.45-15            | 2.97-15 | 7.70-16 | 1.44–16 | 1.76–17 | 1.26-1 |
| $2d_{5/2}$                    | 2.90-12         | 1.64–12            | 9.24-13 | 5.22-13 | 2.94-13 | 1.66–13 | 9.40-14 | 5.26-14 | 2.76-14 | 1.23–14            | 4.24-15 | 1.08–15 | 1.98–16 | 2.40-17 | 1.70-1 |
| $2f_{5/2}$                    | 3.82-12         | 2.15-12            | 1.22-12 | 6.86-13 | 3.86-13 | 2.16-13 | 1.18-13 | 6.04-14 | 2.62-14 | 8.87-15            | 2.28-15 | 4.61-16 | 7.35–17 | 8.20-18 | 5.56-1 |
| $2f_{7/2}$                    | 5.10-12         | 2.87-12            | 1.62-12 | 9.16-13 | 5.15-13 | 2.88-13 | 1.57-13 | 8.01-14 | 3.46-14 | 1.16-14            | 2.97-15 | 5.99-16 | 9.52-17 | 1.06-17 | 7.18-1 |
| 2g <sub>7/2</sub>             | 5.46-12         | 3.08-12            | 1.74-12 | 9.78-13 | 5.44-13 | 2.95-13 | 1.50-13 | 6.52-14 | 2.23-14 | 5.82-15            | 1.23-15 | 2.24-16 | 3.38-17 | 3.70-18 | 2.49-1 |
| $2g_{9/2}$                    | 6.81-12         | 3.84-12            | 2.17-12 | 1.22-12 | 6.78-13 | 3.68-13 | 1.86-13 | 8.10-14 | 2.76-14 | 7.22-15            | 1.52-15 | 2.74-16 | 4.14-17 | 4.52-18 | 3.04-1 |
| $2h_{9/2}$                    | 5.87-12         | 3.31-12            | 1.87-12 | 1.05-12 | 5.76-13 | 3.02-13 | 1.41-13 | 5.29-14 | 1.51-14 | 3.40-15            | 6.55-16 | 1.13-16 | 1.68-17 | 1.82-18 | 1.22-1 |
| $2h_{11/2}$                   | 7.03-12         | 3.97-12            | 2.24-12 | 1.25-12 | 6.90-13 | 3.62-13 | 1.69-13 | 6.33-14 | 1.81-14 | 4.07-15            | 7.83-16 | 1.35–16 | 2.00-17 | 2.18-18 | 1.46-1 |
| $2i_{11/2}$                   | 5.55-12         | 3.13-12            | 1.77-12 | 9.85-13 | 5.34-13 | 2.69-13 | 1.15-13 | 3.82-14 | 9.61-15 | 1.98-15            | 3.66-16 | 6.22-17 | 9.16-18 | 9.93-19 | 6.66-2 |
| $2i_{13/2}$                   | 6.47-12         | 3.65-12            | 2.06-12 | 1.15-12 | 6.22-13 | 3.14-13 | 1.35-13 | 4.45-14 | 1.12-14 | 2.31-15            | 4.26-16 | 7.24-17 | 1.07-17 | 1.16-18 | 7.76-2 |
| otal                          | 1.89-09         | 1.06-09            | 5.99-10 | 3.35-10 | 1.85-10 | 9.87-11 | 5.00-11 | 2.35-11 | 1.01-11 | 3.85-12            | 1.27-12 | 3.49-13 | 7.68-14 | 1.18-14 | 1.20-1 |
| N <sup>46+</sup>              |                 |                    |         |         |         |         |         |         |         |                    |         |         |         |         |        |
| $s_{1/2}$                     | 2.38-11         | 1.34-11            | 7.51-12 | 4.23-12 | 2.38-12 | 1.34-12 | 7.58-13 | 4.34-13 | 2.53-13 | 1.49-13            | 8.50-14 | 4.17-14 | 1.52-14 | 3.55-15 | 5.20-1 |
| $p_{1/2}$                     | 3.00-11         | 1.69-11            | 9.49-12 | 5.34-12 | 3.00-12 | 1.69-12 | 9.59-13 | 5.50-13 | 3.19-13 | 1.82-13            | 9.13-14 | 3.58-14 | 9.87-15 | 1.71-15 | 1.80-1 |
| $p_{3/2}$                     | 6.75-11         | 3.80-11            | 2.14-11 | 1.20-11 | 6.76-12 | 3.80-12 | 2.14-12 | 1.21-12 | 6.80-13 | 3.63-13            | 1.67-13 | 5.94-14 | 1.48-14 | 2.30-15 | 2.12-  |
| $d_{3/2}$                     | 8.06-11         | 4.53-11            | 2.55-11 | 1.43-11 | 8.05-12 | 4.52-12 | 2.52-12 | 1.37-12 | 7.04-13 | 3.11-13            | 1.08-13 | 2.79-14 | 5.24-15 | 6.43-16 | 4.62-1 |
| $d_{5/2}$                     | 1.17-10         | 6.58-11            | 3.70-11 | 2.08-11 | 1.17-11 | 6.55-12 | 3.65-12 | 1.98-12 | 1.01-12 | 4.40-13            | 1.50-13 | 3.81-14 | 7.02-15 | 8.51-16 | 6.07-1 |
| $f_{5/2}$                     | 6.64-11         | 3.74-11            | 2.10-11 | 1.18-11 | 6.61-12 | 3.67-12 | 1.98-12 | 9.94-13 | 4.29-13 | 1.46-13            | 3.80-14 | 7.77-15 | 1.24-15 | 1.39-16 | 9.44-1 |
| $f_{7/2}$                     | 8.65-11         | 4.86-11            | 2.74-11 | 1.54-11 | 8.61-12 | 4.77-12 | 2.58-12 | 1.29-12 | 5.55-13 | 1.88-13            | 4.88-14 | 9.94-15 | 1.59-15 | 1.77-16 | 1.20-1 |
| $s_{1/2}$                     |                 | 6.54-12            |         |         |         |         |         |         |         | 7.22-14            |         |         |         |         |        |
| $p_{1/2}$                     |                 | 7.79–12            |         |         |         |         |         |         |         | 8.60-14            |         |         |         |         |        |
| $p_{3/2}$                     |                 | 1.86-11            |         |         |         |         |         |         |         | 1.78-13            |         |         |         |         |        |
| $d_{3/2}$                     |                 | 2.29-11            |         |         |         |         |         |         |         | 1.62-13            |         |         |         |         |        |
| $d_{5/2}$                     |                 | 3.37-11            |         |         |         |         |         |         |         | 2.31-13            |         |         |         |         |        |
| $5f_{5/2}$                    |                 |                    |         |         |         |         |         | 7.53-13 |         |                    |         |         |         |         |        |
| 5/2<br>5f <sub>7/2</sub>      |                 |                    |         |         |         |         |         | 9.83-13 |         |                    |         |         |         |         |        |
| ,                             |                 | 1.25-11            |         |         |         |         |         |         |         | 2.75-14            |         |         |         |         |        |
| g <sub>7/2</sub>              |                 | 1.25-11            |         |         |         |         |         |         |         | 2.75-14<br>3.39-14 |         |         |         |         |        |
| g <sub>9/2</sub>              |                 |                    |         |         |         |         |         |         |         |                    |         |         |         |         |        |
| S <sub>1/2</sub>              |                 | 3.77-12            |         |         |         |         |         |         |         | 4.07-14            |         |         |         |         |        |
| $p_{1/2}$                     |                 | 4.32-12            |         |         |         |         |         |         |         | 4.80-14            |         |         |         |         |        |
| $p_{3/2}$                     |                 | 1.07-11            |         |         |         |         |         |         |         | 1.02-13            |         |         |         |         |        |
| 5d <sub>3/2</sub>             |                 | 1.32-11            |         |         |         |         |         |         |         | 9.50-14            |         |         |         |         |        |
| $5d_{5/2}$                    |                 |                    |         |         |         |         | 1.10-12 |         |         | 1.36-13            |         |         |         |         |        |
| $5f_{5/2}$                    |                 | 1.92-11            |         |         |         |         |         |         |         | 7.68-14            |         |         |         |         |        |
| of <sub>7/2</sub>             |                 | 2.52-11            |         |         |         |         |         |         |         | 9.96-14            |         |         |         |         |        |
| 5g <sub>7/2</sub>             |                 | 1.41-11            |         |         |         |         |         |         |         | 3.09-14            |         |         |         |         |        |
| 5g <sub>9/2</sub>             |                 | 1.74–11            |         |         |         |         |         |         |         | 3.82-14            |         |         |         |         |        |
| 5h <sub>9/2</sub>             |                 | 5.72-12            |         |         |         |         |         |         |         | 7.63–15            |         |         |         |         |        |
| $5h_{11/2}$                   |                 | 6.83-12            |         |         |         |         |         |         |         | 9.09-15            |         |         |         |         |        |
| s <sub>1/2</sub>              |                 | 2.40-12            |         |         |         |         |         |         |         | 2.53–14            |         |         |         |         |        |
| $p_{1/2}$                     |                 |                    |         |         |         |         | 1.54–13 |         |         | 2.96-14            |         |         |         |         |        |
| $p_{3/2}$                     |                 |                    |         |         |         |         |         | 2.18-13 |         |                    |         |         |         |         |        |
| <sup>7</sup> d <sub>3/2</sub> |                 |                    |         |         |         |         |         | 2.61-13 |         |                    |         |         |         |         |        |
| <sup>7</sup> d <sub>5/2</sub> | 2.22-11         | 1.25-11            | 7.04-12 | 3.96-12 | 2.23-12 | 1.25-12 | 7.01–13 | 3.86-13 | 1.98–13 | 8.69-14            | 2.97-14 | 7.56–15 | 1.39–15 | 1.69–16 | 1.21-1 |
| $f_{5/2}$                     | 2.35-11         | 1.32-11            | 7.45-12 | 4.19–12 | 2.35-12 | 1.31–12 | 7.09–13 | 3.59–13 | 1.56–13 | 5.33-14            | 1.39–14 | 2.85-15 | 4.57-16 | 5.12-17 | 3.47-1 |
| f <sub>7/2</sub>              |                 |                    |         |         |         |         |         | 4.71-13 |         |                    |         |         |         |         |        |
| g <sub>7/2</sub>              | 2.17-11         | 1.22-11            | 6.87-12 | 3.86-12 | 2.15-12 | 1.17-12 | 6.05-13 | 2.73-13 | 9.79-14 | 2.68-14            | 5.84-15 | 1.07-15 | 1.62–16 | 1.77-17 | 1.19-1 |
| g <sub>9/2</sub>              | 2.70-11         | 1.52-11            | 8.53-12 | 4.79-12 | 2.67-12 | 1.46-12 | 7.50-13 | 3.38-13 | 1.21-13 | 3.32-14            | 7.21-15 | 1.32-15 | 2.00-16 | 2.19-17 | 1.47-1 |
| $h_{9/2}$                     | 1.41-11         | 7.96-12            | 4.48-12 | 2.51-12 | 1.39–12 | 7.41-13 | 3.61-13 | 1.46-13 | 4.48-14 | 1.06-14            | 2.10-15 | 3.67-16 | 5.46-17 | 5.94-18 | 3.99-  |
| $h_{11/2}$                    | 1.69-11         | 9.52-12            | 5.35-12 | 3.00-12 | 1.66-12 | 8.85-13 | 4.31-13 | 1.74–13 | 5.35-14 | 1.27-14            | 2.51-15 | 4.38-16 | 6.51–17 | 7.08-18 | 4.75-1 |
| $i_{11/2}$                    |                 | 2.86-12            |         |         |         |         |         |         |         | 2.52-15            |         |         |         |         |        |
| $i_{13/2}$                    |                 | 3.33-12            |         |         |         |         |         | 4.94-14 | 1.35-14 | 2.92-15            | 5.51-16 | 9.43-17 | 1.39–17 | 1.51-18 | 1.01-  |
| SS1/2                         |                 | 1.64-12            |         |         |         |         |         |         |         | 1.68-14            |         |         |         |         |        |
| $3p_{1/2}$                    |                 | 1.80-12            |         |         |         |         |         |         |         | 1.96-14            |         |         |         |         |        |
| $p_{3/2}$                     |                 | 4.65-12            |         |         |         |         |         |         |         | 4.24-14            |         |         |         |         |        |
| $d_{3/2}$                     |                 | 5.66-12            |         |         |         |         |         |         |         | 4.07-14            |         |         |         |         |        |
| $d_{5/2}$                     |                 | 8.50-12            |         |         |         |         |         |         |         | 5.88-14            |         |         |         |         |        |
| $sf_{5/2}$                    |                 | 9.44-12            |         |         |         |         |         |         |         | 3.80-14            |         |         |         |         |        |
| 95/2<br>Sf <sub>7/2</sub>     |                 | 1.25-11            |         |         |         |         |         |         |         | 4.94-14            |         |         |         |         |        |
| /                             |                 | 9.91-12            |         |         |         |         |         |         |         | 4.54-14<br>2.17-14 |         |         |         |         |        |
| 8g <sub>7/2</sub>             |                 | 9.91-12<br>1.23-11 |         |         |         |         |         |         |         | 2.69–14            |         |         |         |         |        |
| g <sub>9/2</sub>              |                 |                    |         |         |         |         |         |         |         |                    |         |         |         |         |        |
| $h_{9/2}$                     |                 | 8.04-12            |         |         |         |         |         |         |         | 1.07-14            |         |         |         |         |        |
| $h_{11/2}$                    |                 | 9.62-12            |         |         |         |         |         |         |         | 1.28-14            |         |         |         |         |        |
| $Si_{11/2}$                   |                 |                    |         |         |         |         |         | 7.04-14 |         |                    |         |         |         |         |        |
| $3i_{13/2}$                   | 9.79-12         | 5.51-12            | 3.10-12 | 1./3-12 | 9.49-13 | 4.93-13 | 2.26-13 | 8.19–14 | 2.23-14 | 4.84-15            | 9.12-16 | 1.30-16 | 2.31-1/ | 2.50-18 | 1.68-1 |

|                              | 3.0     | 3.5       | 4.0     | 4.5     | 5.0     | 5.5       | 6.0     | 6.5     | 7.0     | 7.5     | 8.0     | 8.5     | 9.0                | 9.5     | 10.0   |
|------------------------------|---------|-----------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|---------|--------------------|---------|--------|
| $9s_{1/2}$                   | 2.09-12 | 1.18-12   | 6.63-13 | 3.73-13 | 2.10-13 | 1.18–13   | 6.69-14 | 3.77-14 | 2.12-14 | 1.17–14 | 6.28-15 | 2.96-15 | 1.06-15            | 2.44-16 | 3.55-1 |
| $p_{1/2}$                    | 2.26-12 | 1.27-12   | 7.18–13 | 4.04-13 | 2.28-13 | 1.29-13   | 7.33-14 | 4.22-14 | 2.44-14 | 1.36-14 | 6.72-15 | 2.60-15 | 7.14-16            | 1.23-16 | 1.29-  |
| $p_{3/2}$                    | 5.93-12 | 3.34-12   | 1.88-12 | 1.06-12 | 5.96-13 | 3.35-13   | 1.88-13 | 1.05-13 | 5.77-14 | 2.97-14 | 1.33-14 | 4.62-15 | 1.14-15            | 1.76-16 | 1.61-  |
| $d_{3/2}$                    | 7.16-12 | 4.03-12   | 2.27-12 | 1.28-12 | 7.20-13 | 4.05-13   | 2.27-13 | 1.25-13 | 6.49-14 | 2.88-14 | 9.98-15 | 2.59-15 | 4.85-16            | 5.96-17 | 4.29-  |
| $d_{5/2}$                    | 1.08-11 | 6.07-12   | 3.42-12 | 1.92-12 | 1.08-12 | 6.08-13   | 3.41-13 |         |         |         |         |         | 6.62-16            |         |        |
| $f_{5/2}$                    | 1.23-11 |           |         | 2.20-12 |         |           |         |         |         |         |         |         | 2.38-16            |         |        |
| $f_{7/2}$                    | 1.63-11 |           |         | 2.91-12 |         |           |         |         |         |         |         |         | 3.06-16            |         |        |
| $g_{7/2}$                    | 1.41-11 |           |         | 2.50-12 |         |           |         |         |         |         |         |         | 1.04-16            |         |        |
| '                            |         |           |         | 3.11-12 |         |           |         |         |         |         |         |         | 1.28-16            |         |        |
| 9g <sub>9/2</sub>            |         |           |         | 2.30-12 |         |           |         |         |         |         |         |         | 4.97-17            |         |        |
| 9h <sub>9/2</sub>            |         |           |         | 2.30-12 |         |           |         |         |         |         |         |         | 4.97-17<br>5.94-17 |         |        |
| Əh <sub>11/2</sub>           |         |           |         |         |         |           |         |         |         |         |         |         |                    |         |        |
| ∂i <sub>11/2</sub>           |         |           |         | 1.70-12 |         |           |         |         |         |         |         |         | 2.27-17            |         |        |
| $9i_{13/2}$                  |         |           |         | 1.98-12 |         |           |         |         |         |         |         |         | 2.64-17            |         | 1.92-  |
| $10s_{1/2}$                  |         |           |         | 2.79-13 |         |           |         |         |         |         |         |         | 7.60-16            |         |        |
| $10p_{1/2}$                  |         |           |         | 2.99-13 |         |           |         |         |         |         |         |         | 5.13-16            |         |        |
| $10p_{3/2}$                  |         |           |         | 7.91-13 |         |           |         |         |         |         |         |         | 8.22-16            |         |        |
| $10d_{3/2}$                  |         |           |         | 9.47-13 |         |           |         |         |         |         |         |         | 3.54-16            |         |        |
| $10d_{5/2}$                  |         |           |         | 1.43-12 |         |           |         |         |         |         |         |         | 4.83-16            |         |        |
| $10f_{5/2}$                  |         |           |         | 1.66-12 |         |           |         |         |         |         |         |         | 1.78–16            |         |        |
| $10f_{7/2}$                  |         |           |         | 2.21-12 |         |           |         |         |         |         |         |         | 2.30-16            |         |        |
| 10g <sub>7/2</sub>           | 1.12-11 | 6.33-12   | 3.57-12 | 2.00-12 | 1.12-12 | 6.09-13   | 3.13–13 | 1.41–13 | 5.03-14 | 1.37–14 | 2.98-15 | 5.44-16 | 8.25-17            | 9.02-18 | 6.07-  |
| 10g <sub>9/2</sub>           | 1.40-11 | 7.88–12   | 4.44-12 | 2.49-12 | 1.39-12 | 7.57-13   | 3.90-13 | 1.75–13 | 6.24-14 | 1.70–14 | 3.68-15 | 6.72-16 | 1.02-16            | 1.11-17 | 7.49-  |
| 10h <sub>9/2</sub>           | 1.12-11 | 6.32-12   | 3.56-12 | 1.99-12 | 1.10-12 | 5.89-13   | 2.86-13 | 1.15-13 | 3.54-14 | 8.37-15 | 1.65-15 | 2.88-16 | 4.29-17            | 4.67-18 | 3.13-  |
| $10h_{11/2}$                 | 1.34-11 | 7.56-12   | 4.26-12 | 2.39-12 | 1.32-12 | 7.04-13   | 3.43-13 | 1.38-13 | 4.23-14 | 9.99-15 | 1.97-15 | 3.44-16 | 5.12-17            | 5.57-18 | 3.74-  |
| $10i_{11/2}$                 | 9.58-12 | 5.39-12   | 3.03-12 | 1.70-12 | 9.30-13 | 4.83-13   | 2.21-13 | 8.01-14 | 2.18-14 | 4.73-15 | 8.92-16 | 1.53-16 | 2.26-17            | 2.45-18 | 1.64-  |
| 10i <sub>13/2</sub>          | 1.11-11 | 6.27-12   | 3.53-12 | 1.98-12 | 1.08-12 | 5.63-13   | 2.57-13 | 9.32-14 | 2.54-14 | 5.50-15 | 1.04-15 | 1.77-16 | 2.62-17            | 2.84-18 | 1.91-  |
| $11s_{1/2}$                  |         |           |         | 2.14-13 |         |           |         |         |         |         |         |         | 5.63-16            |         |        |
| $11p_{1/2}$                  |         |           |         | 2.29-13 |         |           |         |         |         |         |         |         | 3.81-16            |         |        |
| $11p_{3/2}$                  |         |           |         | 6.09-13 |         |           |         |         |         |         |         |         | 6.13-16            |         |        |
| $11d_{3/2}$                  |         |           |         | 7.24–13 |         |           |         |         |         |         |         |         | 2.66-16            |         |        |
| $11d_{5/2}$                  |         |           |         | 1.09-12 |         |           |         |         |         |         |         |         | 3.63-16            |         |        |
| $11f_{5/2}$                  |         |           |         | 1.29-12 |         |           |         |         |         |         |         |         | 1.37-16            |         |        |
| /-                           |         |           |         | 1.71-12 |         |           |         |         |         |         |         |         | 1.76–16            |         |        |
| $11f_{7/2}$                  |         |           |         |         |         |           |         |         |         |         |         |         |                    |         |        |
| 11g <sub>7/2</sub>           |         |           |         | 1.62-12 |         |           |         |         |         |         |         |         | 6.59-17            |         |        |
| 11g <sub>9/2</sub>           |         |           |         | 2.01-12 |         |           |         |         |         |         |         |         | 8.14-17            |         |        |
| $11h_{9/2}$                  |         |           |         | 1.70-12 |         |           |         |         |         |         |         |         | 3.64–17            |         |        |
| $11h_{11/2}$                 | 1.14–11 |           |         |         |         |           |         |         |         |         |         |         | 4.34–17            |         |        |
| $11i_{11/2}$                 |         |           |         | 1.58–12 |         |           |         |         |         |         |         |         | 2.10–17            |         |        |
| $11i_{13/2}$                 |         |           |         | 1.84-12 |         |           |         |         |         |         |         |         | 2.44-17            |         |        |
| $12s_{1/2}$                  |         |           |         | 1.69–13 |         |           |         | 1.66–14 | 9.05-15 | 4.89-15 | 2.57-15 | 1.20-15 | 4.28-16            | 9.83-17 | 1.43-  |
| $12p_{1/2}$                  | 1.00-12 | 5.65-13   | 3.18–13 | 1.80-13 | 1.01-13 | 5.70-14   | 3.22-14 | 1.82-14 | 1.03-14 | 5.65-15 | 2.76-15 | 1.06-15 | 2.91-16            | 5.01-17 | 5.26-  |
| $12p_{3/2}$                  | 2.68-12 | 1.51-12   | 8.53-13 | 4.81-13 | 2.70-13 | 1.51–13   | 8.43-14 | 4.63-14 | 2.48-14 | 1.25–14 | 5.50-15 | 1.90-15 | 4.68-16            | 7.23–17 | 6.61-  |
| $12d_{3/2}$                  |         |           |         | 5.67-13 |         |           |         |         |         |         |         |         | 2.04-16            |         |        |
| $12d_{5/2}$                  | 4.80-12 | 2.70-12   | 1.52-12 | 8.60-13 | 4.83-13 | 2.71-13   | 1.51-13 | 8.18-14 | 4.12-14 | 1.78–14 | 6.00-15 | 1.52-15 | 2.80-16            | 3.39–17 | 2.39-  |
| $12f_{5/2}$                  |         |           |         |         |         |           | 1.72-13 |         |         |         |         |         |                    |         |        |
| $12f_{7/2}$                  | 7.60-12 | 4.28-12   | 2.41-12 | 1.36-12 | 7.62-13 | 4.23-13   | 2.28-13 | 1.14-13 | 4.89-14 | 1.64-14 | 4.25-15 | 8.67-16 | 1.39–16            | 1.57–17 | 1.07-  |
| $12g_{7/2}$                  |         |           |         |         |         |           | 2.05-13 |         |         |         |         |         | 5.32-17            |         |        |
| $12g_{9/2}$                  |         |           |         | 1.64-12 |         |           |         |         |         |         |         |         | 6.57-17            |         |        |
| $12h_{9/2}$                  |         |           |         | 1.44-12 |         |           |         |         |         |         |         |         | 3.06-17            |         |        |
| $12h_{11/2}$                 |         |           |         | 1.73-12 |         |           |         |         |         |         |         |         | 3.66-17            |         |        |
| $12i_{11/2}$<br>$12i_{11/2}$ |         |           |         |         |         |           | 1.86-13 |         |         |         |         |         | 1.88-17            |         |        |
|                              |         |           |         |         |         |           | 2.16-13 |         |         |         |         |         | 2.19-17            |         |        |
| 12i <sub>13/2</sub><br>total |         |           |         |         |         |           |         |         |         |         |         |         |                    |         |        |
| 0tai<br>W <sup>56+</sup>     | 2.57-09 | 1.45-09   | 0.10-10 | 4.57-10 | 2.55-10 | 1.50-10   | 6.97–11 | J.JU-11 | 1.45-11 | J.02-12 | 1.55-12 | J.02-13 | 1.00-13            | 2.20-14 | 2.40-  |
|                              | 2.04 10 | 1 15 10   | C /C 11 | 2 62 11 | 204 11  | 1 1 / 1 1 | 6 25 12 | 2 /2 12 | 17/ 12  | 7 50 10 | 262 12  | C 0E 14 | 1 20 14            | 1 60 15 | 1.10   |
| 3d <sub>3/2</sub>            |         |           |         |         |         |           | 6.35-12 |         |         |         |         |         |                    |         |        |
| $3d_{5/2}$                   |         |           |         |         |         |           | 8.86-12 |         |         |         |         |         |                    |         |        |
| $4s_{1/2}$                   |         |           |         |         |         |           | 1.10-12 |         |         |         |         |         |                    |         |        |
| $4p_{1/2}$                   |         |           |         |         |         |           | 1.41-12 |         |         |         |         |         |                    |         |        |
| $4p_{3/2}$                   |         |           |         |         |         |           | 2.99-12 |         |         |         |         |         |                    |         |        |
| $4d_{3/2}$                   |         |           |         |         |         |           | 3.14-12 |         |         |         |         |         |                    |         |        |
| $4d_{5/2}$                   | 1.44–10 | 8.12-11   | 4.57-11 | 2.57-11 | 1.44–11 | 8.08-12   | 4.49-12 | 2.44-12 | 1.24–12 | 5.41-13 | 1.87–13 | 4.81–14 | 8.99-15            | 1.10–15 | 7.89-  |
| $4f_{5/2}$                   | 7.95-11 | 4.47-11   | 2.51-11 | 1.41-11 | 7.92-12 | 4.41-12   | 2.40-12 | 1.23-12 | 5.52-13 | 1.97-13 | 5.37-14 | 1.13–14 | 1.83-15            | 2.06-16 | 1.41-  |
|                              | 1 00 10 | 5 70-11   | 3 26-11 | 1 83-11 | 1.03-11 | 5.70-12   | 3.11-12 | 1.59-12 | 7.12-13 | 2.53-13 | 6.86-14 | 1.44-14 | 2.33-15            | 2.62-16 | 1.78-  |
| 1f7/2                        | 1.03-10 | J.73 - 11 | J.20 II |         |         |           |         |         |         |         |         |         |                    |         |        |
| $4f_{7/2}$<br>$5s_{1/2}$     |         |           |         |         |         | 1.01-12   | 5.67-13 | 3.22-13 | 1.84-13 | 1.04-13 | 5.63-14 | 2.65-14 | 9.45-15            | 2.17-15 | 3,16-  |

| Table 1 ( | (continued) |
|-----------|-------------|
|-----------|-------------|

| Shell                                    | log T(K                      |                    |         |                    |           |                    |         |                    |                    |         |                    |                    |                    |                    |                  |
|------------------------------------------|------------------------------|--------------------|---------|--------------------|-----------|--------------------|---------|--------------------|--------------------|---------|--------------------|--------------------|--------------------|--------------------|------------------|
| Shell -                                  | $\frac{\log_{10} T(K)}{3.0}$ | 3.5                | 4.0     | 4.5                | 5.0       | 5.5                | 6.0     | 6.5                | 7.0                | 7.5     | 8.0                | 8.5                | 9.0                | 9.5                | 10.0             |
| 5n                                       |                              |                    | 4.0     |                    |           |                    |         |                    |                    |         |                    |                    |                    |                    |                  |
| 5p <sub>3/2</sub><br>5d <sub>3/2</sub>   | 4.95–11<br>5.58–11           | 2.78–11<br>3.14–11 | 1.57-11 |                    |           | 2.78–12<br>3.12–12 |         | 8.75–13<br>9.49–13 | 4.81–13<br>4.86–13 |         | 1.11–13<br>7.55–14 | 3.86–14<br>1.98–14 | 9.55–15<br>3.76–15 | 1.49–15<br>4.66–16 | 1.37-1           |
| 5d <sub>5/2</sub>                        | 8.08-11                      | 4.54-11            |         | 1.44-11            |           |                    |         | 1.37-12            | 4.80-13<br>6.96-13 |         | 1.05-13            |                    | 5.05-15            |                    | 4.42-1           |
| $5f_{5/2}$                               | 6.35-11                      | 3.57-11            |         | 1.13-11            |           |                    |         | 9.87-13            |                    |         |                    | 9.12-15            |                    |                    | 1.14-1           |
| $5f_{7/2}$                               | 8.27-11                      | 4.65-11            |         | 1.47-11            |           |                    |         |                    | 5.75-13            |         |                    | 1.17-14            |                    | 2.13-16            |                  |
| $5g_{7/2}$                               | 3.24-11                      | 1.82-11            | 1.02-11 |                    |           | 1.77-12            |         | 4.44-13            | 1.73-13            | 5.14-14 |                    |                    | 3.42-16            | 3.76-17            | 2.53-1           |
| $5g_{9/2}$                               | 3.99-11                      | 2.25-11            |         | 7.09–12            |           |                    |         | 5.47-13            |                    |         |                    | 2.73-15            |                    |                    | 3.10-1           |
| $6s_{1/2}$                               | 1.06-11                      | 5.94-12            |         | 1.88-12            |           | 5.96-13            | 3.36-13 | 1.90-13            | 1.08-13            |         | 3.23-14            |                    |                    |                    | 1.77-1           |
| $6p_{1/2}$                               | 1.27-11                      | 7.14-12            |         | 2.26-12            |           |                    |         | 2.30-13            | 1.30-13            |         |                    | 1.30-14            |                    | 6.11-16            | 6.44-1           |
| 6p <sub>3/2</sub>                        | 2.95-11                      | 1.66-11            |         | 5.26-12            |           | 1.66-12            |         | 5.22-13            | 2.86-13            |         |                    | 2.23-14            |                    | 8.54-16            | 7.87-1           |
| 6d <sub>3/2</sub>                        | 3.40-11                      | 1.91-11            | 1.07-11 |                    | 3.40-12   |                    | 1.06-12 | 5.79-13            | 2.96-13            |         | 4.58-14            |                    | 2.28-15            | 2.82-16            | 2.04-1           |
| 6d <sub>5/2</sub>                        | 4.96-11                      | 2.79-11            |         | 8.82-12            |           |                    |         | 8.41-13            | 4.27-13            |         |                    | 1.65-14            |                    | 3.74-16            | 2.69-1           |
| $6f_{5/2}$                               | 4.50-11                      | 2.53-11            | 1.42-11 | 8.01-12            | 4.49-12   | 2.50-12            | 1.36-12 | 7.02-13            | 3.16-13            | 1.13-13 | 3.08-14            | 6.47-15            | 1.05-15            | 1.18–16            | 8.06-1           |
| $6f_{7/2}$                               | 5.89-11                      | 3.32-11            | 1.87-11 | 1.05-11            | 5.88-12   | 3.27-12            | 1.78-12 | 9.16-13            | 4.11-13            | 1.46-13 | 3.96-14            | 8.31-15            | 1.35-15            | 1.51-16            | 1.03-1           |
| 6g <sub>7/2</sub>                        | 3.62-11                      | 2.03-11            | 1.14–11 | 6.42-12            | 3.59-12   | 1.98-12            | 1.04-12 | 4.97-13            | 1.94-13            | 5.75-14 | 1.32-14            | 2.49-15            | 3.82-16            | 4.20-17            | 2.83-1           |
| $6g_{9/2}$                               | 4.47-11                      | 2.51-11            | 1.41-11 | 7.94-12            | 4.44-12   | 2.44-12            | 1.29-12 | 6.14-13            | 2.39-13            | 7.08-14 | 1.63-14            | 3.06-15            | 4.69-16            | 5.15-17            | 3.47-1           |
| $6h_{9/2}$                               | 1.52-11                      | 8.56-12            | 4.81-12 | 2.70-12            | 1.50-12   | 8.14-13            | 4.13-13 | 1.80-13            | 6.10-14            | 1.57–14 | 3.25-15            | 5.79-16            | 8.68-17            | 9.45-18            | 6.35-1           |
| $6h_{11/2}$                              | 1.81-11                      | 1.02-11            | 5.73-12 | 3.21-12            | 1.79–12   | 9.69-13            | 4.91-13 | 2.14-13            | 7.25-14            | 1.86–14 | 3.86-15            | 6.87-16            | 1.03–16            | 1.12–17            | 7.54-1           |
| 7s <sub>1/2</sub>                        | 6.85-12                      | 3.85-12            |         | 1.22-12            |           | 3.87-13            |         | 1.23–13            | 6.94–14            |         | 2.02-14            |                    |                    | 7.51–16            | 1.09-1           |
| 7p <sub>1/2</sub>                        | 8.07-12                      | 4.54–12            |         | 1.44–12            |           | 4.56-13            |         | 1.46-13            | 8.25-14            |         | 2.13-14            |                    | 2.20-15            |                    | 3.99-1           |
| $7p_{3/2}$                               | 1.93–11                      | 1.08-11            |         | 3.43-12            |           |                    | 6.08-13 | 3.39–13            | 1.84–13            |         |                    | 1.41–14            |                    |                    | 4.92-1           |
| 7d <sub>3/2</sub>                        | 2.23-11                      | 1.25–11            |         | 3.97-12            |           |                    |         | 3.80-13            | 1.94-13            |         | 2.98-14            |                    | 1.47-15            |                    | 1.32-1           |
| 7d <sub>5/2</sub>                        | 3.27-11                      | 1.84-11            | 1.03-11 |                    |           |                    | 1.02-12 | 5.54-13            |                    | 1.22-13 |                    |                    | 1.99-15            | 2.43-16            | 1.74-1           |
| $7f_{5/2}$                               | 3.19-11                      | 1.80-11            |         | 5.68-12            |           |                    |         | 4.98-13            | 2.24-13            |         |                    | 4.57-15            |                    | 8.36-17            |                  |
| 7f <sub>7/2</sub>                        | 4.20-11                      | 2.36-11            |         | 7.47–12            |           |                    |         | 6.53-13            | 2.92-13            |         | 2.81-14            |                    |                    |                    | 7.28–1           |
| $7g_{7/2}$                               | 3.14-11                      | 1.77–11            |         | 5.58-12            |           |                    |         |                    | 1.68–13            |         |                    |                    | 3.31-16            |                    |                  |
| $7g_{9/2}$                               | 3.89-11                      | 2.19-11            | 1.23-11 |                    |           | 2.12-12            |         | 5.34-13            | 2.07-13            |         | 1.41-14            |                    | 4.06-16            | 4.46-17            | 3.01-1           |
| $7h_{9/2}$                               | 2.11-11                      | 1.19-11            |         | 3.74-12            |           | 1.13-12            |         | 2.50-13            | 8.47-14            |         | 4.51-15            |                    | 1.20-16            | 1.31-17            | 8.82-1           |
| $7h_{11/2}$                              | 2.52-11                      | 1.41-11            |         | 4.47-12            |           |                    |         | 2.98-13            | 1.01-13            |         | 5.36-15            |                    |                    | 1.56-17            |                  |
| 7i <sub>11/2</sub>                       | 7.62-12                      | 4.29-12            |         | 1.35-12            |           |                    | 1.92-13 | 7.63-14            | 2.29-14            |         |                    | 1.80-16            | 2.67-17            | 2.90-18            | 1.95-1           |
| 7i <sub>13/2</sub>                       | 8.85–12<br>4.74–12           | 4.98–12<br>2.67–12 |         | 1.57–12<br>8.45–13 |           | 4.61–13<br>2.68–13 |         | 8.85–14<br>8.48–14 | 2.66–14<br>4.74–14 |         | 1.20–15<br>1.35–14 |                    | 3.09–17<br>2.17–15 | 3.36–18<br>4.95–16 | 2.25-1<br>7.15-1 |
| 8s <sub>1/2</sub>                        | 4.74-12<br>5.49-12           |                    |         | 8.45-15<br>9.80-13 |           | 2.08-13<br>3.10-13 |         | 8.48-14<br>9.93-14 | 4.74-14<br>5.58-14 |         | 1.35-14            |                    | 2.17-15<br>1.46-15 |                    |                  |
| 8p <sub>1/2</sub>                        | 1.34-11                      | 7.52-12            |         | 2.38-12            |           |                    | 4.22-13 | 2.34-13            | 1.26-13            |         | 2.75-14            |                    | 2.31-15            |                    | 3.28-1           |
| 8p <sub>3/2</sub><br>8d <sub>3/2</sub>   | 1.55-11                      | 8.70-12            | 4.90-12 |                    | 1.55-12   | 8.68-13            | 4.83-13 | 2.63-13            | 1.34–13            | 5.87–14 |                    |                    | 1.00-15            | 1.24–16            | 8.98-1           |
| 8d <sub>5/2</sub>                        | 2.28-11                      | 1.28-11            |         | 4.05-12            |           |                    |         | 3.85-13            | 1.94-13            |         | 2.86-14            |                    |                    |                    | 1.19-1           |
| 8f <sub>5/2</sub>                        | 2.32-11                      | 1.31-11            |         | 4.13-12            |           |                    | 7.04–13 | 3.62-13            | 1.62-13            |         | 1.57-14            |                    | 5.35-16            | 6.02-17            | 4.15-1           |
| 8f <sub>7/2</sub>                        | 3.06-11                      | 1.72-11            |         | 5.44-12            |           |                    |         | 4.75-13            |                    |         | 2.03-14            |                    |                    | 7.72-17            |                  |
| 8g <sub>7/2</sub>                        | 2.55-11                      | 1.43-11            |         | 4.53-12            |           |                    |         | 3.50-13            | 1.36-13            |         |                    | 1.74-15            |                    | 2.93-17            | 1.98-1           |
| 8g <sub>9/2</sub>                        | 3.16-11                      | 1.78–11            | 1.00-11 |                    |           | 1.73-12            |         | 4.34-13            | 1.68-13            |         | 1.14-14            |                    | 3.28-16            | 3.60-17            | 2.43-1           |
| 8h <sub>9/2</sub>                        | 2.13-11                      | 1.20-11            | 6.74-12 |                    |           | 1.14-12            |         | 2.52-13            | 8.54-14            |         | 4.54-15            |                    |                    | 1.32-17            |                  |
| 8h <sub>11/2</sub>                       | 2.54-11                      | 1.43-11            |         | 4.51-12            |           | 1.36-12            | 6.90-13 | 3.00-13            | 1.02-13            |         | 5.40-15            |                    |                    |                    | 1.05-1           |
| 8i <sub>11/2</sub>                       | 1.26-11                      | 7.08-12            |         | 2.23-12            |           | 6.55-13            |         | 1.26-13            | 3.79-14            |         |                    |                    | 4.40-17            | 4.78-18            | 3.21-1           |
| 8i <sub>13/2</sub>                       | 1.46-11                      | 8.22-12            | 4.62-12 | 2.59-12            | 1.43-12   | 7.61-13            | 3.68-13 | 1.46-13            | 4.40-14            | 1.02-14 | 1.98-15            | 3.44-16            | 5.10-17            | 5.54-18            | 3.72-1           |
| 9s <sub>1/2</sub>                        | 3.44-12                      |                    | 1.09-12 | 6.13-13            | 3.45-13   | 1.94–13            | 1.09-13 |                    |                    |         |                    |                    | 1.51-15            |                    | 4.96-1           |
| 9p <sub>1/2</sub>                        | 3.94-12                      | 2.22-12            | 1.25-12 | 7.02-13            | 3.95-13   | 2.23-13            | 1.26–13 | 7.09-14            | 3.96-14            | 2.11-14 | 9.96-15            | 3.75-15            | 1.02-15            | 1.75–16            | 1.83-1           |
| 9p <sub>3/2</sub>                        | 9.72-12                      | 5.47-12            | 3.08-12 | 1.73–12            | 9.74-13   | 5.47-13            | 3.06-13 | 1.69–13            | 9.04-14            | 4.50-14 | 1.94–14            | 6.62-15            | 1.62-15            | 2.50-16            | 2.30-1           |
| 9d <sub>3/2</sub>                        | 1.12-11                      | 6.31-12            | 3.55-12 | 2.00-12            | 1.12–12   | 6.30-13            | 3.50-13 | 1.90-13            | 9.63-14            | 4.20-14 | 1.45–14            | 3.78-15            | 7.14–16            | 8.81-17            | 6.36-1           |
| 9d <sub>5/2</sub>                        |                              |                    |         | 2.95-12            |           |                    |         | 2.79-13            | 1.40-13            | 6.02-14 | 2.04-14            | 5.21-15            | 9.67-16            | 1.18–16            | 8.45-1           |
| $9f_{5/2}$                               |                              |                    |         | 3.09-12            |           |                    |         |                    |                    |         |                    |                    | 3.95–16            |                    |                  |
| $9f_{7/2}$                               |                              |                    |         | 4.07-12            |           |                    |         |                    |                    |         |                    |                    | 5.07-16            |                    |                  |
| 9g <sub>7/2</sub>                        |                              |                    |         | 3.62-12            |           |                    |         |                    |                    |         |                    |                    | 2.12-16            |                    |                  |
| $9g_{9/2}$                               |                              |                    |         | 4.50-12            |           |                    |         |                    |                    |         |                    |                    | 2.61-16            |                    |                  |
| $9h_{9/2}$                               |                              |                    |         | 3.42-12            |           |                    |         |                    |                    |         |                    |                    | 1.09–16            |                    |                  |
| 9h <sub>11/2</sub>                       |                              |                    |         | 4.09-12            |           |                    |         |                    |                    |         |                    |                    | 1.30-16            |                    |                  |
| 9 <i>i</i> <sub>11/2</sub>               |                              |                    |         | 2.55-12            |           |                    |         |                    |                    |         |                    |                    | 5.03-17            |                    |                  |
| 9i <sub>13/2</sub>                       |                              |                    |         | 2.96-12            |           |                    |         |                    |                    |         |                    |                    | 5.83-17            |                    |                  |
| 10s <sub>1/2</sub>                       |                              |                    |         | 4.62-13            |           |                    |         |                    |                    |         |                    |                    | 1.09-15            |                    |                  |
| $10p_{1/2}$                              |                              |                    |         | 5.24-13            |           |                    |         |                    |                    |         |                    |                    | 7.36-16            |                    |                  |
| 10p <sub>3/2</sub>                       |                              |                    |         | 1.31-12            |           |                    |         |                    |                    |         |                    |                    | 1.18-15            |                    |                  |
| 10d <sub>3/2</sub>                       |                              |                    |         | 1.50-12            |           |                    |         |                    |                    |         |                    |                    | 5.25-16            |                    |                  |
| 10d <sub>5/2</sub>                       |                              |                    |         | 2.22-12            |           |                    |         |                    |                    |         |                    |                    | 7.12-16            |                    |                  |
| $10f_{5/2}$                              |                              |                    |         | 2.36-12            |           |                    |         |                    |                    |         |                    |                    | 2.98-16            |                    |                  |
|                                          |                              | 0.95 12            | 5 55 12 | 3 12-12            | 1.75 - 12 | 9.73-13            | 5.29-13 | 2.70-13            | 1.20-13            | 4.23-14 | 1.14–14            | 2.37-15            | 3.83–16            | 4.30-17            | 2.92-1           |
| 10f <sub>7/2</sub><br>10g <sub>7/2</sub> |                              |                    |         |                    |           |                    | 4.71-13 |                    |                    |         |                    |                    | 4 66 -             |                    | 4                |

| Table 1 (contin | ued) |  |
|-----------------|------|--|
|-----------------|------|--|

| Shell _                                                                          | $\frac{\log_{10} T(k)}{3.0}$ | 3.5     | 4.0                | 4.5     | 5.0     | 5.5     | 6.0     | 6.5     | 7.0     | 7.5                | 8.0     | 8.5     | 9.0     | 9.5     | 10.0   |
|----------------------------------------------------------------------------------|------------------------------|---------|--------------------|---------|---------|---------|---------|---------|---------|--------------------|---------|---------|---------|---------|--------|
| 10~                                                                              |                              |         | 6.41-12            |         |         |         |         |         |         | 3.15-14            |         |         |         |         |        |
| $\log_{9/2}$                                                                     |                              |         |                    |         |         |         |         |         |         |                    |         |         |         |         |        |
| $0h_{9/2}$                                                                       |                              |         | 5.29–12<br>6.32–12 |         |         |         |         |         |         | 1.71-14            |         |         |         |         |        |
| 0h <sub>11/2</sub>                                                               |                              |         | 6.52-12<br>4.52-12 |         |         |         |         |         |         | 2.04–14<br>9.95–15 |         |         |         |         |        |
| 0i <sub>11/2</sub>                                                               |                              |         | 4.52-12<br>5.26-12 |         |         |         |         |         |         | 9.95-15<br>1.15-14 |         |         |         |         |        |
| $0i_{13/2}$<br>$1s_{1/2}$                                                        |                              |         | 6.35-13            |         |         |         |         |         |         | 1.01-14            |         |         |         |         |        |
| $1p_{1/2}$                                                                       |                              |         | 7.16–13            |         |         |         |         |         |         | 1.16–14            |         |         |         |         |        |
| $1p_{1/2}$<br>$1p_{3/2}$                                                         |                              |         | 1.80-12            |         |         |         |         |         |         | 2.50-14            |         |         |         |         |        |
| $1d_{3/2}$                                                                       |                              |         | 2.07-12            |         |         |         |         |         |         | 2.36-14            |         |         |         |         |        |
| $1d_{5/2}$                                                                       |                              |         | 3.06-12            |         |         |         |         |         |         | 3.39-14            |         |         |         |         |        |
| $1f_{5/2}$                                                                       |                              |         | 3.29-12            |         |         |         |         |         |         | 2.51-14            |         |         |         |         |        |
| $1f_{7/2}$                                                                       |                              |         | 4.35-12            |         |         |         |         |         |         | 3.27-14            |         |         |         |         |        |
| $1g_{7/2}$                                                                       |                              |         | 4.17-12            |         |         |         |         |         |         | 2.04-14            |         |         |         |         |        |
| $1g_{9/2}$                                                                       |                              |         | 5.18-12            |         |         |         |         |         |         | 2.52-14            |         |         |         |         |        |
| $1b_{9/2}$                                                                       |                              |         | 4.51-12            |         |         |         |         | 1.68-13 |         | 1.45-14            |         |         |         |         | 5.84-1 |
| $1h_{11/2}$                                                                      |                              |         | 5.39-12            |         |         |         |         |         |         | 1.73–14            |         |         |         |         |        |
| $1i_{11/2}$                                                                      |                              |         | 4.22-12            |         |         |         |         |         |         | 9.24-15            |         |         |         |         |        |
| $1i_{13/2}$                                                                      |                              |         | 4.91-12            |         |         |         |         |         |         | 1.07-14            |         |         |         |         |        |
| $2s_{1/2}$                                                                       |                              |         | 5.04-13            |         |         |         |         |         |         | 7.82–15            |         |         |         |         |        |
| $2p_{1/2}$                                                                       |                              |         | 5.64-13            |         |         |         |         |         |         | 8.96-15            |         |         |         |         |        |
| $2p_{3/2}$                                                                       |                              |         | 1.43-12            |         |         |         |         |         |         | 1.94-14            |         |         |         |         |        |
| $2d_{3/2}$                                                                       |                              |         | 1.64-12            |         |         |         |         |         |         | 1.83-14            |         |         |         |         |        |
| 2d <sub>5/2</sub>                                                                |                              |         | 2.43-12            |         |         |         |         |         |         | 2.64-14            |         |         |         |         |        |
| $2f_{5/2}$                                                                       |                              |         | 2.62-12            |         |         |         |         |         |         | 1.98-14            |         |         |         |         |        |
| $2f_{7/2}$                                                                       | 1.09-11                      | 6.16-12 | 3.47-12            | 1.95-12 | 1.09-12 | 6.08-13 | 3.30-13 |         |         | 2.58-14            |         |         |         |         |        |
| $2g_{7/2}$                                                                       |                              |         | 3.40-12            |         |         |         |         |         |         | 1.65-14            |         |         |         |         |        |
| $2g_{9/2}$                                                                       |                              |         | 4.23-12            |         |         |         |         |         |         | 2.04-14            |         |         |         |         |        |
| $2h_{9/2}$                                                                       |                              |         | 3.82-12            |         |         |         |         |         |         | 1.22-14            |         |         |         |         |        |
| $2h_{11/2}$                                                                      |                              |         | 4.57-12            |         |         |         |         |         |         | 1.46-14            |         |         |         |         |        |
| $2i_{11/2}$                                                                      |                              |         | 3.80-12            |         |         |         |         |         |         | 8.31-15            |         |         |         |         |        |
| $12i_{13/2}$                                                                     | 1.40-11                      | 7.86-12 | 4.43-12            | 2.48-12 | 1.37-12 | 7.29-13 | 3.52-13 | 1.39-13 | 4.18-14 | 9.65-15            | 1.88-15 | 3.25-16 | 4.83-17 | 5.24-18 | 3.52-1 |
| otal                                                                             |                              |         | 1.32-09            |         |         |         |         |         |         | 1.01-11            |         |         |         |         |        |
| N <sup>64+</sup>                                                                 |                              |         |                    |         |         |         |         |         |         |                    |         |         |         |         |        |
| Bs <sub>1/2</sub>                                                                | 1.02-10                      | 5.71-11 | 3.21-11            | 1.81-11 | 1.02-11 | 5.72-12 | 3.22-12 | 1.82-12 | 1.03-12 | 5.80-13            | 3.15-13 | 1.50-13 | 5.45-14 | 1.27-14 | 1.88-1 |
| $3p_{1/2}$                                                                       | 1.33-10                      | 7.46-11 | 4.20-11            | 2.36-11 | 1.33-11 | 7.46-12 | 4.19-12 | 2.35-12 | 1.30-12 | 6.90-13            | 3.28-13 | 1.25-13 | 3.45-14 | 6.02-15 | 6.43-1 |
| $3p_{3/2}$                                                                       | 2.51-10                      | 1.41-10 | 7.93-11            | 4.46-11 | 2.51-11 | 1.41-11 | 7.89-12 | 4.40-12 | 2.40-12 | 1.24-12            | 5.54-13 | 1.96-13 | 4.93-14 | 7.78-15 | 7.28-1 |
| $3d_{3/2}$                                                                       | 1.90-10                      | 1.07-10 | 6.00-11            | 3.37-11 | 1.89-11 | 1.06-11 | 5.90-12 | 3.20-12 | 1.63-12 | 7.26-13            | 2.57-13 | 6.88-14 | 1.33-14 | 1.66-15 | 1.21-1 |
| $3d_{5/2}$                                                                       | 2.64-10                      | 1.49-10 | 8.35-11            | 4.70-11 | 2.64-11 | 1.48-11 | 8.21-12 | 4.45-12 | 2.26-12 | 9.96-13            | 3.48-13 | 9.13-14 | 1.73-14 | 2.14-15 | 1.54-1 |
| $4s_{1/2}$                                                                       | 4.42-11                      | 2.48-11 | 1.40-11            | 7.85-12 | 4.42-12 | 2.49-12 | 1.40-12 | 7.91–13 | 4.48-13 | 2.52-13            | 1.35-13 | 6.34-14 | 2.26-14 | 5.23-15 | 7.63–1 |
| $p_{1/2}$                                                                        | 5.59-11                      | 3.14-11 | 1.77-11            | 9.94-12 | 5.59-12 | 3.14-12 | 1.77-12 | 9.93-13 | 5.53-13 | 2.96-13            | 1.41-13 | 5.37-14 | 1.47-14 | 2.56-15 | 2.72-1 |
| $4p_{3/2}$                                                                       | 1.15–10                      | 6.46-11 | 3.63-11            | 2.04-11 | 1.15–11 | 6.45-12 | 3.62-12 | 2.02-12 | 1.10-12 | 5.66-13            | 2.52-13 | 8.81-14 | 2.20-14 | 3.45-15 | 3.21-1 |
| $4d_{3/2}$                                                                       | 1.11-10                      | 6.22-11 | 3.50-11            | 1.97-11 | 1.10-11 | 6.19–12 | 3.44-12 | 1.87–12 | 9.58-13 | 4.27-13            | 1.51–13 | 4.03-14 | 7.76–15 | 9.69-16 | 7.06-1 |
| $d_{5/2}$                                                                        | 1.57–10                      | 8.81-11 | 4.96-11            | 2.79-11 | 1.57–11 | 8.77-12 | 4.88-12 | 2.65-12 | 1.35–12 | 5.93-13            | 2.07-13 | 5.42-14 | 1.02-14 | 1.26-15 | 9.12-1 |
| $f_{5/2}$                                                                        |                              |         |                    |         |         |         | 2.49-12 |         |         |                    |         |         |         |         |        |
| 4f <sub>7/2</sub>                                                                | 1.06-10                      | 5.96-11 | 3.35-11            | 1.88-11 | 1.06-11 | 5.88-12 | 3.22-12 | 1.67–12 | 7.64–13 | 2.81-13            | 7.86–14 | 1.69–14 | 2.77-15 | 3.13–16 | 2.13-1 |
| s <sub>1/2</sub>                                                                 | 2.35-11                      | 1.32–11 | 7.45-12            | 4.19–12 | 2.36-12 | 1.33–12 | 7.47-13 |         |         |                    |         |         |         |         |        |
| $p_{1/2}$                                                                        |                              |         | 9.18-12            |         |         |         |         |         |         | 1.55–13            |         |         |         |         |        |
| p <sub>3/2</sub>                                                                 | 6.27-11                      | 3.53-11 | 1.98–11            | 1.12–11 | 6.28-12 | 3.53-12 | 1.98-12 |         |         | 3.06-13            |         |         |         |         |        |
| $d_{3/2}$                                                                        |                              |         | 2.07-11            |         |         |         |         |         |         | 2.52-13            |         |         |         |         |        |
| $d_{5/2}$                                                                        |                              |         | 2.97-11            |         |         |         |         |         |         | 3.54-13            |         |         |         |         |        |
| $f_{5/2}$                                                                        |                              |         | 2.23-11            |         |         |         |         |         |         | 1.89–13            |         |         |         |         |        |
| $f_{7/2}$                                                                        | 9.19–11                      | 5.17-11 | 2.91-11            | 1.63–11 | 9.16-12 | 5.11-12 | 2.79-12 |         |         | 2.44-13            |         |         |         |         |        |
| g <sub>7/2</sub>                                                                 |                              |         | 1.25-11            |         |         |         |         |         |         | 7.25–14            |         |         |         |         |        |
| g <sub>9/2</sub>                                                                 | 4.87-11                      | 2.74-11 | 1.54–11            | 8.65-12 | 4.84-12 | 2.68-12 | 1.43-12 | 6.99-13 | 2.85-13 | 8.88-14            | 2.12-14 | 4.06-15 | 6.27-16 | 6.91–17 | 4.66-1 |
| is <sub>1/2</sub>                                                                | 1.42–11                      | 7.99–12 | 4.50-12            | 2.53-12 | 1.42-12 | 8.01-13 | 4.51-13 | 2.54-13 | 1.43–13 | 7.91–14            | 4.12–14 | 1.88–14 | 6.57-15 | 1.50-15 | 2.17-1 |
| $p_{1/2}$                                                                        |                              |         | 5.42-12            |         |         |         |         |         |         | 9.11-14            |         |         |         |         |        |
| p <sub>3/2</sub>                                                                 | 3.84-11                      | 2.16-11 | 1.22-11            | 6.84-12 | 3.84-12 | 2.16-12 | 1.21-12 | 6.73-13 | 3.65-13 | 1.84–13            | 8.04-14 | 2.76-14 | 6.81-15 | 1.06-15 | 9.78-1 |
| 6d <sub>3/2</sub>                                                                | 4.15-11                      | 2.33-11 | 1.31-11            | 7.38–12 | 4.14-12 | 2.32-12 | 1.29-12 | 7.03-13 | 3.59–13 | 1.59–13            | 5.58-14 | 1.48–14 | 2.82-15 | 3.52-16 | 2.56-1 |
| $5d_{5/2}$                                                                       | 5.99-11                      | 3.37-11 | 1.89–11            | 1.06-11 | 5.98-12 | 3.35-12 | 1.86-12 | 1.01-12 | 5.12-13 | 2.24-13            | 7.73–14 | 2.01-14 | 3.77-15 | 4.63-16 | 3.34-1 |
| $5f_{5/2}$                                                                       | 5.21-11                      | 2.93-11 | 1.65–11            | 9.27-12 | 5.20-12 | 2.90-12 | 1.59–12 | 8.24-13 | 3.78–13 | 1.39–13            | 3.90-14 | 8.36-15 | 1.37–15 | 1.56–16 | 1.06-1 |
|                                                                                  | 6.82-11                      | 3.84–11 | 2.16-11            | 1.21-11 | 6.80-12 | 3.79–12 | 2.07-12 | 1.07-12 | 4.92-13 | 1.80–13            | 5.02-14 | 1.07–14 | 1.76–15 | 1.99–16 | 1.35-1 |
| $5f_{7/2}$                                                                       |                              | 2 50 11 | 1 /1 11            | 7 00-12 | 4 42-12 | 2 44-12 | 1.31-12 | 6.39-13 | 2.60-13 | 8.13-14            | 1.94-14 | 3.72-15 | 5.76-16 | 6.35-17 | 4.28-1 |
| /                                                                                | 4.44-11                      | 2.50-11 | 1.41-11            | 7.50-12 | 1.12 12 | 2       |         |         |         |                    |         |         |         |         |        |
| g <sub>7/2</sub>                                                                 |                              |         |                    |         |         |         | 1.61-12 |         |         | 9.99-14            | 2.38-14 |         |         |         | 5.24-1 |
| 5f <sub>7/2</sub><br>5g <sub>7/2</sub><br>5g <sub>9/2</sub><br>5h <sub>9/2</sub> | 5.48-11                      | 3.08-11 | 1.74–11            | 9.74–12 | 5.45-12 | 3.01-12 |         | 7.87–13 | 3.20-13 | 9.99–14<br>2.49–14 |         | 4.56–15 | 7.05–16 | 7.76–17 |        |

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

| Shell                                  | $\log_{10} T(K$ | .)      |         |         |                    |         |         |         |         |                    |                    |         |         |         |         |
|----------------------------------------|-----------------|---------|---------|---------|--------------------|---------|---------|---------|---------|--------------------|--------------------|---------|---------|---------|---------|
| -                                      | 3.0             | 3.5     | 4.0     | 4.5     | 5.0                | 5.5     | 6.0     | 6.5     | 7.0     | 7.5                | 8.0                | 8.5     | 9.0     | 9.5     | 10.0    |
| 7s <sub>1/2</sub>                      | 9.34-12         | 5.25-12 | 2.96-12 | 1.66-12 | 9.36-13            | 5.27-13 | 2.96-13 | 1.67–13 | 9.32-14 | 5.09-14            | 2.62-14            | 1.18–14 | 4.11-15 | 9.35-16 | 1.35-10 |
| $7p_{1/2}$                             | 1.11–11         | 6.23-12 | 3.51-12 | 1.97-12 | 1.11-12            | 6.24-13 | 3.51-13 |         |         | 5.82-14            |                    |         |         |         | 5.02-17 |
| $7p_{3/2}$                             |                 |         |         |         | 2.55-12            |         |         |         |         | 1.20-13            |                    |         |         |         | 6.19-1  |
| $7d_{3/2}$                             | 2.79-11         | 1.57–11 | 8.83-12 | 4.96-12 | 2.79-12            | 1.56–12 | 8.69-13 |         |         | 1.06-13            |                    |         |         |         |         |
| $7d_{5/2}$                             | 4.05-11         | 2.28-11 |         |         | 4.05–12            |         |         |         |         | 1.49–13            |                    |         |         |         |         |
| $7f_{5/2}$                             | 3.80-11         |         |         |         | 3.79–12            |         |         |         |         | 1.01–13            |                    |         |         |         |         |
| 7f <sub>7/2</sub>                      | 4.98-11         |         |         |         | 4.97–12            |         |         |         |         | 1.31–13            |                    |         |         |         |         |
| $7g_{7/2}$                             | 3.88-11         |         |         |         | 3.86-12            |         |         | 5.58-13 |         | 7.09–14            |                    |         |         | 5.52-17 |         |
| $7g_{9/2}$                             | 4.80-11         |         |         |         | 4.77-12            |         |         |         |         | 8.72-14            |                    |         |         |         |         |
| $7h_{9/2}$                             | 2.74-11         | 1.54-11 |         |         | 2.71-12            |         |         |         |         | 3.44-14            |                    |         |         | 2.20-17 |         |
| $7h_{11/2}$                            | 3.26-11         |         |         |         | 3.23-12            |         |         |         |         | 4.08-14            |                    |         |         |         |         |
| $7i_{11/2}$                            | 1.00-11         |         |         |         | 9.87-13            |         |         |         |         | 8.75-15            |                    |         |         |         | 3.35-1  |
| $7i_{13/2}$                            |                 |         |         |         | 1.14-12            |         |         |         |         | 1.01-14            |                    |         |         |         | 3.87-1  |
| $8s_{1/2}$                             |                 |         |         |         | 6.54-13            |         |         |         |         | 3.47-14            |                    |         |         |         |         |
| $3p_{1/2}$                             |                 |         |         |         | 7.65-13            |         |         |         |         | 3.95-14            |                    |         |         | 3.18-16 | 3.35-1  |
| $3p_{3/2}$                             |                 |         |         |         | 1.79-12            |         |         |         |         | 8.23-14            |                    |         |         |         |         |
| 3d <sub>3/2</sub>                      | 2.87-11         | 1.62-11 |         |         | 1.97–12<br>2.87–12 |         |         |         |         | 7.36–14<br>1.04–13 |                    |         |         |         |         |
| $3d_{5/2}$                             |                 |         |         |         |                    |         |         |         |         |                    |                    |         |         |         |         |
| 8f <sub>5/2</sub>                      |                 |         |         |         | 2.81-12            |         |         |         | 2.02-13 | 7.38-14            | 2.05-14<br>2.66-14 |         |         |         |         |
| $8f_{7/2}$                             | 3.69-11         |         |         |         | 3.69–12<br>3.16–12 |         |         |         |         |                    |                    |         |         |         | 7.12-1  |
| 8g <sub>7/2</sub>                      |                 |         |         |         | 3.16–12<br>3.91–12 |         |         |         |         | 5.76–14<br>7.09–14 |                    |         |         |         |         |
| $g_{9/2}$                              |                 |         |         |         |                    |         |         |         |         |                    |                    |         |         |         |         |
| 3h <sub>9/2</sub>                      |                 |         |         |         | 2.73–12<br>3.26–12 |         |         |         |         | 3.46–14<br>4.11–14 |                    |         |         |         |         |
| $h_{11/2}$                             |                 |         |         |         | 3.26-12            |         |         |         |         |                    |                    |         |         |         | 5.51-1  |
| 8i <sub>11/2</sub>                     | 1.65-11         |         |         |         | 1.88-12            |         |         |         |         | 1.44–14<br>1.67–14 |                    |         |         |         |         |
| $3i_{13/2}$                            |                 |         |         |         | 4.78-12            |         |         |         |         | 2.47-14            |                    |         |         |         | 6.24-1  |
| $s_{1/2}$                              |                 |         |         |         | 4.78-13<br>5.53-13 |         |         |         |         | 2.47-14            |                    |         |         |         |         |
| $p_{1/2}$                              |                 |         |         |         | 1.31-12            |         |         |         |         | 5.89–14            |                    |         |         |         |         |
| 9p <sub>3/2</sub><br>9d <sub>3/2</sub> | 1.45-11         |         |         |         | 1.45-12            |         |         |         |         | 5.32-14            |                    |         |         |         |         |
| $\frac{3}{2}$                          |                 | 1.19-11 |         |         | 2.12-12            |         |         |         |         | 7.57-14            |                    |         |         |         |         |
| $9f_{5/2}$                             | 2.12 11         | 1.20-11 |         |         | 2.12-12            |         |         |         |         | 5.52-14            |                    |         |         | 6.07-17 |         |
| $9f_{7/2}$                             |                 |         |         |         | 2.79-12            |         |         |         |         | 7.19–14            |                    |         |         | 7.78–17 |         |
| $9g_{7/2}$                             |                 |         |         |         | 2.54-12            |         |         |         | 1.48-13 |                    | 1.09-14            |         |         | 3.56-17 |         |
| $9g_{9/2}$                             |                 |         |         |         | 3.14-12            |         |         |         | 1.83-13 |                    |                    |         |         | 4.37-17 |         |
| $9h_{9/2}$                             |                 |         |         |         | 2.48-12            |         |         |         |         | 3.12-14            |                    |         |         |         |         |
| $9h_{11/2}$                            |                 |         |         |         | 2.95-12            |         |         |         |         | 3.71–14            |                    |         |         |         |         |
| $9i_{11/2}$                            |                 |         |         |         | 1.86-12            |         |         |         |         | 1.64-14            |                    |         |         |         | 6.28-1  |
| $9i_{13/2}$                            |                 |         |         |         | 2.15-12            |         |         | 2.43-13 |         | 1.90-14            |                    |         |         | 1.08-17 | 7.27-1  |
| $10s_{1/2}$                            |                 |         |         |         | 3.61-13            |         |         |         |         | 1.83-14            |                    |         |         |         |         |
| $10p_{1/2}$                            |                 |         |         |         | 4.15-13            |         |         |         |         | 2.07-14            |                    |         |         |         |         |
| $10p_{3/2}$                            | 9.96-12         | 5.61-12 | 3.16-12 | 1.78-12 | 9.98-13            | 5.60-13 | 3.12-13 | 1.71-13 | 8.97-14 | 4.37-14            | 1.84-14            | 6.19-15 | 1.51-15 | 2.33-16 | 2.14-1  |
| $10d_{3/2}$                            | 1.10-11         | 6.20-12 | 3.49-12 | 1.96-12 | 1.10-12            | 6.17-13 | 3.42-13 | 1.84-13 | 9.19-14 | 3.97-14            | 1.37-14            | 3.57-15 | 6.79-16 | 8.44-17 | 6.09-1  |
| 10d <sub>5/2</sub>                     | 1.61-11         | 9.07-12 | 5.10-12 | 2.87-12 | 1.61-12            | 9.02-13 | 4.99-13 | 2.67-13 | 1.33-13 | 5.66-14            | 1.91-14            | 4.90-15 | 9.15-16 | 1.12-16 | 8.06-1  |
| $10f_{5/2}$                            | 1.64-11         | 9.26-12 | 5.21-12 | 2.93-12 | 1.64-12            | 9.15-13 | 4.99-13 | 2.57-13 | 1.16-13 | 4.22-14            | 1.17-14            | 2.49-15 | 4.08-16 | 4.62-17 | 3.23-1  |
| $10f_{7/2}$                            |                 |         |         |         | 2.16-12            |         |         |         |         | 5.50-14            |                    |         |         |         |         |
| $10g_{7/2}$                            |                 |         |         |         | 2.04-12            |         |         | 2.93-13 | 1.18-13 | 3.67-14            | 8.70-15            | 1.67-15 | 2.57-16 | 2.83-17 | 1.91-1  |
| 0g <sub>9/2</sub>                      | 2.54-11         | 1.43-11 | 8.05-12 | 4.52-12 | 2.53-12            | 1.40-12 | 7.46-13 | 3.63-13 | 1.46-13 | 4.52-14            | 1.07-14            | 2.05-15 | 3.16-16 | 3.48-17 | 2.35-1  |
| $10h_{9/2}$                            | 2.17-11         | 1.22-11 | 6.86-12 | 3.85-12 | 2.15-12            | 1.17-12 | 6.07-13 | 2.76-13 | 9.92-14 | 2.69-14            | 5.76-15            | 1.04-15 | 1.57–16 | 1.72–17 | 1.15-1  |
| $10h_{11/2}$                           | 2.58-11         | 1.45-11 | 8.18-12 | 4.60-12 | 2.56-12            | 1.40-12 | 7.25-13 | 3.29-13 | 1.18–13 | 3.20-14            | 6.85-15            | 1.24–15 | 1.87–16 | 2.04-17 | 1.37-1  |
| 0 <i>i</i> <sub>11/2</sub>             | 1.87-11         | 1.05-11 | 5.93-12 | 3.32-12 | 1.84–12            | 9.94-13 | 4.95-13 | 2.08-13 | 6.68-14 | 1.63–14            | 3.26-15            | 5.72-16 | 8.52-17 | 9.27-18 | 6.22-1  |
| 0 <i>i</i> <sub>13/2</sub>             | 2.17-11         | 1.22-11 | 6.89–12 | 3.86-12 | 2.14-12            | 1.15-12 | 5.75-13 | 2.41-13 | 7.74–14 | 1.89–14            | 3.78-15            | 6.62–16 | 9.87-17 | 1.07-17 | 7.21-1  |
| 1 <i>s</i> <sub>1/2</sub>              | 2.80-12         | 1.58-12 | 8.88-13 | 5.00-13 | 2.81-13            | 1.58–13 | 8.82-14 | 4.88-14 | 2.64-14 | 1.38–14            | 6.87-15            | 3.03-15 | 1.04–15 | 2.35-16 | 3.37-1  |
| $1p_{1/2}$                             | 3.20-12         | 1.80-12 | 1.01-12 | 5.70-13 | 3.21-13            | 1.80-13 | 1.01-13 | 5.61-14 | 3.04-14 | 1.56–14            | 7.13–15            | 2.63-15 | 7.07-16 | 1.21-16 | 1.28-1  |
| $1p_{3/2}$                             | 7.77-12         | 4.37-12 | 2.46-12 | 1.39–12 | 7.79–13            | 4.36-13 | 2.42-13 | 1.32–13 | 6.89-14 | 3.32-14            | 1.39–14            | 4.67-15 | 1.13–15 | 1.75–16 | 1.60-1  |
| $1d_{3/2}$                             | 8.59-12         | 4.83-12 | 2.72-12 | 1.53–12 | 8.60-13            | 4.81-13 | 2.66-13 | 1.42-13 | 7.07-14 | 3.04-14            | 1.04–14            | 2.72-15 | 5.16-16 | 6.40-17 | 4.59-1  |
| $1d_{5/2}$                             | 1.26-11         | 7.08-12 | 3.99–12 | 2.24-12 | 1.26-12            | 7.04-13 | 3.89-13 | 2.07-13 | 1.02-13 | 4.33–14            | 1.46–14            | 3.73-15 | 6.96-16 | 8.52-17 | 6.06-1  |
| $11f_{5/2}$                            | 1.30–11         | 7.30–12 | 4.11-12 | 2.31-12 | 1.30–12            | 7.22-13 | 3.93-13 | 2.02-13 | 9.09-14 | 3.28-14            | 9.06-15            | 1.93–15 | 3.17-16 | 3.57-17 | 2.43-1  |
| $11f_{7/2}$                            | 1.71–11         | 9.63-12 | 5.42-12 | 3.05-12 | 1.71–12            | 9.52-13 | 5.18-13 | 2.65-13 | 1.19–13 | 4.28-14            | 1.18–14            | 2.49–15 | 4.07-16 | 4.59–17 | 3.13-1  |
| 11g <sub>7/2</sub>                     | 1.66-11         | 9.33-12 | 5.25-12 | 2.95-12 | 1.65–12            | 9.13-13 | 4.86-13 | 2.36-13 | 9.53-14 | 2.95-14            | 6.98-15            | 1.33–15 | 2.06-16 | 2.27-17 | 1.53-1  |
| $11g_{9/2}$                            | 2.06-11         | 1.16-11 | 6.53-12 | 3.67-12 | 2.05-12            | 1.13-12 | 6.04-13 | 2.93-13 | 1.18-13 | 3.64-14            | 8.60-15            | 1.64–15 | 2.53-16 | 2.79-17 | 1.88-1  |
| $11h_{9/2}$                            | 1.84-11         | 1.04-11 | 5.84-12 | 3.28-12 | 1.83-12            | 1.00-12 | 5.17-13 | 2.35-13 | 8.43-14 | 2.28-14            | 4.88-15            | 8.83-16 | 1.33–16 | 1.45-17 | 9.77-1  |
| $11h_{11/2}$                           | 2.20-11         | 1.24-11 | 6.98-12 | 3.92-12 | 2.19-12            | 1.19–12 | 6.18-13 | 2.80-13 | 1.00-13 | 2.72-14            | 5.81-15            | 1.05-15 | 1.58–16 | 1.73–17 | 1.16-1  |
| $11i_{11/2}$                           | 1.74–11         | 9.81-12 | 5.52-12 | 3.10-12 | 1.72–12            | 9.25-13 | 4.61-13 | 1.93–13 | 6.20-14 | 1.51–14            | 3.03-15            | 5.31-16 | 7.91–17 | 8.60-18 | 5.78-1  |
|                                        | 2 03-11         | 1.14-11 | 6.42-12 | 3.60-12 | 2.00-12            | 1.08-12 | 5.36-13 | 2.24-13 | 7.20-14 | 1.75-14            | 3.51-15            | 6.15-16 | 9.17-17 | 9.97-18 | 6.69-1  |
| $11i_{13/2}$                           | 2.05 11         |         |         |         |                    |         |         |         |         |                    |                    |         |         |         |         |

| $12s_{1/2}$<br>$12p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.0     | 3.5                | 4.0     | 4.5     | 5.0     | 5.5     | 6.0     | 6.5     | 7.0     | 7.5     | 8.0     | 8.5     | 9.0     | 9.5                | 10.0  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------------------|-------|
| -/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ノフィー レノ |                    | 707 10  | 2 00 12 | 224 12  | 1 20 12 | 7 00 14 | 205 11  | 2.07.14 | 1.07.14 | E 20 15 | 2 22 15 | 7.00 10 | 1.00.10            | 2.50  |
| $2D_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |         |         |         |         |         |         |         |         |         |         |         | 1.80-16            |       |
| -/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | 1.42-12            |         |         |         |         |         |         |         |         |         |         |         | 9.30-17            |       |
| $12p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 3.49-12            |         |         |         |         |         |         |         |         |         |         |         | 1.35-16            |       |
| $12d_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 3.85-12            |         |         |         |         |         |         |         |         |         |         |         | 4.96-17            |       |
| $12d_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 5.65-12            |         |         |         |         |         |         |         |         |         |         |         | 6.63-17            |       |
| $12f_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 5.87-12            |         |         |         |         |         |         |         |         |         |         |         | 2.80-17            |       |
| $12f_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.38–11 | 7.75–12            | 4.36-12 | 2.45-12 | 1.38–12 | 7.65–13 | 4.15–13 | 2.12-13 | 9.47-14 | 3.39–14 | 9.29-15 | 1.97–15 | 3.21-16 | 3.63–17            | 2.46- |
| 12g <sub>7/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.36–11 | 7.63–12            | 4.30-12 | 2.42-12 | 1.35–12 | 7.46-13 | 3.97-13 | 1.92-13 | 7.74–14 | 2.39-14 | 5.65-15 | 1.08-15 | 1.67-16 | 1.83–17            | 1.24- |
| $12g_{9/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.69-11 | 9.49-12            | 5.34-12 | 3.00-12 | 1.68-12 | 9.27-13 | 4.93-13 | 2.39-13 | 9.58-14 | 2.95-14 | 6.96-15 | 1.33-15 | 2.05-16 | 2.26-17            | 1.52- |
| 12h <sub>9/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.56-11 | 8.80-12            | 4.95-12 | 2.78-12 | 1.55-12 | 8.48-13 | 4.38-13 | 1.98-13 | 7.11-14 | 1.92-14 | 4.11-15 | 7.43-16 | 1.12-16 | 1.22-17            | 8.22- |
| $12h_{11/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.87-11 | 1.05-11            | 5.92-12 | 3.33-12 | 1.85-12 | 1.01-12 | 5.23-13 | 2.37-13 | 8.48-14 | 2.29-14 | 4.89-15 | 8.84-16 | 1.33-16 | 1.45-17            | 9.78- |
| $12i_{11/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.57-11 | 8.84-12            | 4.98-12 | 2.79-12 | 1.55-12 | 8.34-13 | 4.15-13 | 1.74-13 | 5.58-14 | 1.36-14 | 2.72-15 | 4.77-16 | 7.10-17 | 7.72-18            | 5.19- |
| $12i_{13/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.83-11 | 1.03-11            | 5.79-12 | 3.25-12 | 1.80-12 | 9.70-13 | 4.83-13 | 2.02-13 | 6.47-14 | 1.58-14 | 3.15-15 | 5.53-16 | 8.23-17 | 8.95-18            | 6.01- |
| total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.51-09 | 3.10-09            | 1.74-09 | 9.79-10 | 5.46-10 | 3.00-10 | 1.59-10 | 7.89-11 | 3.60-11 | 1.48-11 | 5.35-12 | 1.65-12 | 4.05-13 | 6.86-14            | 7.59- |
| W <sup>70+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                    |         |         |         |         |         |         |         |         |         |         |         |                    |       |
| 2p <sub>1/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 482-10  | 2.71-10            | 1 52-10 | 8 57-11 | 4 82-11 | 271-11  | 1 52-11 | 8 47-12 | 4 64-12 | 2 42-12 | 1 13-12 | 4 29-13 | 1 18-13 | 2.08-14            | 2 24- |
| $2p_{3/2}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 4.34-10            |         |         |         |         |         |         |         |         |         |         |         | 2.48-14            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 4.34-10<br>6.80-11 |         |         |         |         |         |         |         |         |         |         |         | 2.48-14<br>1.43-14 |       |
| $3s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 8.57–11            |         |         |         |         |         |         |         |         |         |         |         | 6.90–15            |       |
| $3p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                    |         |         |         |         |         |         |         |         |         |         |         |                    |       |
| 3p <sub>3/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 1.59-10            |         |         |         |         |         |         |         |         |         |         |         | 8.92-15            |       |
| 3d <sub>3/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 1.18-10            |         |         |         |         |         |         |         |         |         |         |         | 2.04-15            |       |
| 3d <sub>5/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 1.64-10            |         |         |         |         |         |         |         |         |         |         |         | 2.61-15            |       |
| $4s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 3.04-11            |         |         |         |         |         |         |         |         |         |         |         | 6.01-15            |       |
| $4p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 3.75-11            |         |         |         |         |         |         |         |         |         |         |         | 3.00-15            |       |
| $4p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 7.51–11            |         |         |         |         |         |         |         |         |         |         |         | 4.04–15            |       |
| $4d_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.26-10 | 7.08–11            | 3.98-11 | 2.24-11 | 1.26-11 | 7.05-12 | 3.93-12 | 2.14-12 | 1.11-12 | 5.01-13 | 1.82–13 | 4.96-14 | 9.68-15 | 1.22-15            | 8.96- |
| $4d_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.78–10 | 9.99-11            | 5.62-11 | 3.16-11 | 1.77–11 | 9.95-12 | 5.54-12 | 3.02-12 | 1.55–12 | 6.95-13 | 2.48-13 | 6.63-14 | 1.27–14 | 1.58–15            | 1.15- |
| $4f_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.75-11 | 5.48-11            | 3.08-11 | 1.73–11 | 9.73-12 | 5.43-12 | 2.98-12 | 1.57-12 | 7.37–13 | 2.83-13 | 8.24-14 | 1.82-14 | 3.05-15 | 3.48-16            | 2.38- |
| $4f_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.26-10 | 7.06-11            | 3.97-11 | 2.23-11 | 1.25-11 | 6.99-12 | 3.84-12 | 2.01-12 | 9.45-13 | 3.61-13 | 1.05-13 | 2.31-14 | 3.84-15 | 4.37-16            | 2.99- |
| $5s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.92-11 | 1.64-11            | 9.25-12 | 5.20-12 | 2.92-12 | 1.65-12 | 9.26-13 | 5.21-13 | 2.93-13 | 1.62-13 | 8.47-14 | 3.85-14 | 1.34-14 | 3.06-15            | 4.42- |
| $5p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.52-11 | 1.98-11            | 1.11-11 | 6.27-12 | 3.52-12 | 1.98-12 | 1.11-12 | 6.25-13 | 3.47-13 | 1.84-13 | 8.67-14 | 3.28-14 | 8.95-15 | 1.56-15            | 1.66- |
| $5p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.43-11 |                    |         | 1.32-11 |         |         |         |         |         |         |         |         |         | 2.14-15            |       |
| $5d_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 4.25-11            |         |         |         |         |         |         |         |         |         |         |         | 7.21-16            |       |
| $5d_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.08-10 |                    |         | 1.92-11 |         |         |         |         |         |         |         |         |         | 9.42-16            |       |
| $5f_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 4.72-11            |         |         |         |         |         |         |         |         |         |         |         | 2.99-16            |       |
| 5f <sub>7/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.09-10 |                    |         | 1.93-11 |         |         |         |         |         |         |         |         |         | 3.77-16            |       |
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                    |         |         |         |         |         |         |         |         |         |         |         |                    |       |
| $5g_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 2.68-11            |         |         |         |         |         |         |         |         |         |         |         | 8.20-17            |       |
| $5g_{9/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 3.29-11            |         |         |         |         |         |         |         |         |         |         |         | 9.96-17            |       |
| $6s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 1.00-11            |         |         |         |         |         |         |         |         |         |         |         | 1.76-15            |       |
| $5p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 1.19–11            |         |         |         |         |         |         |         |         |         |         |         | 9.04-16            |       |
| $5p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 2.59–11            |         |         |         |         |         |         |         |         |         |         |         | 1.27–15            |       |
| $6d_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.83-11 | 2.72-11            | 1.53–11 | 8.60-12 | 4.83-12 | 2.71-12 | 1.51–12 | 8.23-13 | 4.23–13 | 1.90–13 | 6.83–14 | 1.84–14 | 3.58-15 | 4.50-16            | 3.29- |
| $6d_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.95-11 | 3.91-11            |         |         |         |         |         |         |         |         |         |         |         | 5.91-16            |       |
| $6f_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.20-11 | 3.48-11            | 1.96–11 | 1.10-11 | 6.18-12 | 3.45-12 | 1.90-12 | 9.96-13 | 4.68-13 | 1.79–13 | 5.20-14 | 1.15–14 | 1.92–15 | 2.18-16            | 1.49- |
| $6f_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.08-11 | 4.54-11            | 2.55-11 | 1.44–11 | 8.05-12 | 4.49-12 | 2.47-12 | 1.29-12 | 6.07-13 | 2.31-13 | 6.67-14 | 1.46–14 | 2.43-15 | 2.77-16            | 1.89- |
| $6g_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.34-11 | 3.00-11            | 1.69-11 | 9.49-12 | 5.31-12 | 2.95-12 | 1.59-12 | 7.92-13 | 3.35-13 | 1.09-13 | 2.70-14 | 5.30-15 | 8.29-16 | 9.16-17            | 6.19- |
| $6g_{9/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.57-11 | 3.69-11            | 2.08-11 | 1.17-11 | 6.54-12 | 3.62-12 | 1.95-12 | 9.73-13 | 4.10-13 | 1.34-13 | 3.30-14 | 6.47-15 | 1.01-15 | 1.12-16            | 7.54- |
| $6h_{9/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 1.34-11            |         |         |         |         |         |         |         |         |         |         |         | 2.30-17            |       |
| $6h_{11/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 1.59-11            |         |         |         |         |         |         |         |         |         |         |         | 2.72-17            |       |
| $7s_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 6.64-12            |         |         |         |         |         |         |         |         |         |         |         | 1.10-15            |       |
| $7p_{1/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 7.72–12            |         |         |         |         |         |         |         |         |         |         |         | 5.70-16            |       |
| $7p_{3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 1.73-11            |         |         |         |         |         |         |         |         |         |         |         | 8.07-16            |       |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 1.75-11            |         |         |         |         |         |         |         |         |         |         |         | 2.97-16            |       |
| 7d <sub>3/2</sub><br>7d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                    |         |         |         |         |         |         |         |         |         |         |         |                    |       |
| 7d <sub>5/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 2.66-11            |         |         |         |         |         |         |         |         |         |         |         | 3.91-16            |       |
| $7f_{5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 2.54-11            |         |         |         |         |         |         |         |         |         |         |         | 1.57-16            |       |
| $7f_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 3.32-11            |         |         |         |         |         |         |         |         |         |         |         | 2.00-16            |       |
| $7g_{7/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 2.62-11            |         |         |         |         |         |         |         |         |         |         |         | 7.95–17            |       |
| $7g_{9/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 3.23-11            |         |         |         |         |         |         |         |         |         |         |         | 9.70-17            |       |
| 7h <sub>9/2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.30-11 | 1.85–11            | 1.04–11 | 5.85-12 | 3.27-12 | 1.79–12 | 9.42-13 | 4.41-13 | 1.66–13 | 4.72–14 | 1.04–14 | 1.91–15 | 2.90-16 | 3.18–17            | 2.14- |
| $7h_{11/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.91-11 | 2.20-11            | 1.24–11 | 6.95-12 | 3.88-12 | 2.13-12 | 1.12-12 | 5.23-13 | 1.97-13 | 5.58-14 | 1.23-14 | 2.26-15 | 3.43-16 | 3.75-17            | 2.53- |
| $7i_{11/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.21-11 | 6.80-12            | 3.82-12 | 2.14-12 | 1.19–12 | 6.47-13 | 3.28-13 | 1.43-13 | 4.81-14 | 1.22-14 | 2.50-15 | 4.43-16 | 6.63-17 | 7.21-18            | 4.85- |
| $7i_{13/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.40-11 | 7.87-12            | 4.42-12 | 2.48-12 | 1.38-12 | 7.49–13 | 3.80-13 | 1.65-13 | 5.55-14 | 1.41-14 | 2.89-15 | 5.11-16 | 7.65–17 | 8.32-18            | 5.59- |
| · · 13/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |         |         |         |         |         |         |         |         |         |         |         |                    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.28-12 | 4.66–12            | 2.62–12 | 1.47-12 | 8.29-13 | 4.00-13 | 2.02-15 | 1.40-13 | 8.08-14 | 4.52-14 | 2.17-14 | 9.57-15 | 5.27-15 | 7.35–16            | 1.05- |
| $8s_{1/2} \\ 8p_{1/2} $ |         | 4.66–12<br>5.35–12 |         |         |         |         |         |         |         |         |         |         |         | 7.35-16<br>3.82-16 |       |

| Table | 11 | (continued) |  |
|-------|----|-------------|--|
|-------|----|-------------|--|

| Shell                                       | $\log_{10} T(K$ | .)      |                    |         |         |         |                    |         |         |                    |         |         |         |                        |        |
|---------------------------------------------|-----------------|---------|--------------------|---------|---------|---------|--------------------|---------|---------|--------------------|---------|---------|---------|------------------------|--------|
|                                             | 3.0             | 3.5     | 4.0                | 4.5     | 5.0     | 5.5     | 6.0                | 6.5     | 7.0     | 7.5                | 8.0     | 8.5     | 9.0     | 9.5                    | 10.0   |
| 8d <sub>3/2</sub>                           | 2.32-11         | 1.31-11 | 7.35–12            | 4.14-12 | 2.32-12 | 1.30-12 | 7.24–13            | 3.93-13 | 2.00-13 | 8.90-14            | 3.16-14 | 8.46-15 | 1.64–15 | 2.05-16                | 1.50-1 |
| $3d_{5/2}$                                  | 3.37-11         | 1.90-11 | 1.07-11            | 6.00-12 | 3.37-12 | 1.89-12 | 1.05-12            | 5.68-13 | 2.87-13 | 1.26-13            | 4.40-14 | 1.15-14 | 2.19-15 | 2.71-16                | 1.96-1 |
| $f_{5/2}$                                   | 3.34-11         | 1.88-11 | 1.06-11            | 5.94-12 | 3.33-12 | 1.86-12 | 1.02-12            | 5.35-13 | 2.50-13 | 9.50-14            | 2.74-14 | 6.03-15 | 1.00-15 | 1.14-16                | 7.82-1 |
| $f_{7/2}$                                   | 4.38-11         | 2.46-11 | 1.39-11            | 7.79-12 | 4.37-12 | 2.44-12 | 1.34-12            | 7.00-13 | 3.26-13 | 1.23-13            | 3.53-14 | 7.73-15 | 1.28-15 | 1.46-16                | 9.95-1 |
| g <sub>7/2</sub>                            |                 |         | 1.20-11            |         |         |         |                    |         |         | 7.72-14            |         |         |         |                        |        |
| /                                           |                 |         | 1.49-11            |         |         |         |                    |         |         | 9.49-14            |         |         |         |                        |        |
| g <sub>9/2</sub>                            |                 |         | 1.45-11            |         |         |         |                    |         |         | 4.74-14            |         |         |         |                        |        |
| $h_{9/2}$                                   |                 |         |                    |         |         |         |                    |         |         |                    |         |         |         |                        |        |
| $h_{11/2}$                                  |                 |         | 1.25-11            |         |         |         |                    |         |         | 5.62-14            |         |         |         |                        |        |
| $8i_{11/2}$                                 |                 |         | 6.28-12            |         |         |         |                    |         |         | 2.00-14            |         |         |         |                        |        |
| $i_{13/2}$                                  |                 |         | 7.28-12            |         |         |         |                    |         |         | 2.32-14            |         |         |         |                        |        |
| $s_{1/2}$                                   |                 |         | 1.92–12            |         |         |         |                    |         |         | 3.09-14            |         |         |         |                        |        |
| $p_{1/2}$                                   |                 |         | 2.18-12            |         |         |         |                    |         |         | 3.43-14            |         |         |         |                        |        |
| $p_{3/2}$                                   | 1.60-11         | 9.01-12 | 5.07-12            | 2.85-12 | 1.60-12 | 8.99-13 | 5.02-13            | 2.76–13 | 1.46–13 | 7.13–14            | 3.02-14 | 1.02-14 | 2.49-15 | 3.85-16                | 3.56-1 |
| $d_{3/2}$                                   | 1.71–11         | 9.65-12 | 5.43-12            | 3.05-12 | 1.72-12 | 9.61-13 | 5.34-13            | 2.89-13 | 1.46–13 | 6.46-14            | 2.28-14 | 6.09-15 | 1.17-15 | 1.47-16                | 1.07-1 |
| $d_{5/2}$                                   | 2.49-11         | 1.40-11 | 7.89-12            | 4.44-12 | 2.49-12 | 1.40-12 | 7.75-13            | 4.18-13 | 2.10-13 | 9.17-14            | 3.18-14 | 8.32-15 | 1.58-15 | 1.95-16                | 1.41-1 |
| $f_{5/2}$                                   | 2.53-11         | 1.42-11 | 8.00-12            | 4.50-12 | 2.52-12 | 1.41-12 | 7.72-13            | 4.04-13 | 1.88-13 | 7.11-14            | 2.05-14 | 4.49-15 | 7.47-16 | 8.51-17                | 5.82-1 |
| $f_{7/2}$                                   | 3.32-11         | 1.87-11 | 1.05-11            | 5.91-12 | 3.32-12 | 1.85-12 | 1.01-12            | 5.29-13 | 2.46-13 | 9.23-14            | 2.64-14 | 5.76-15 | 9.55-16 | 1.09-16                | 7.42-1 |
| $g_{7/2}$                                   |                 |         | 9.67-12            |         |         |         |                    |         |         | 6.16-14            |         |         |         |                        |        |
| )g <sub>9/2</sub>                           |                 |         | 1.20-11            |         |         |         |                    |         |         | 7.58-14            |         |         |         |                        |        |
| 9/2<br>h <sub>9/2</sub>                     |                 |         | 9.49-12            |         |         |         |                    |         |         | 4.27-14            |         |         |         |                        |        |
| . /                                         |                 |         | 9.49-12<br>1.13-11 |         |         |         |                    |         |         | 4.27-14<br>5.07-14 |         |         |         |                        |        |
| $h_{11/2}$                                  |                 |         |                    |         |         |         |                    |         |         |                    |         |         |         |                        |        |
| $i_{11/2}$                                  |                 |         | 7.16-12            |         |         |         |                    |         |         | 2.28-14            |         |         |         |                        |        |
| $i_{13/2}$                                  |                 |         | 8.31-12            |         |         |         |                    |         |         | 2.64-14            |         |         |         |                        |        |
| 0s <sub>1/2</sub>                           |                 |         | 1.46-12            |         |         |         |                    |         |         | 2.29-14            |         |         |         |                        |        |
| $0p_{1/2}$                                  |                 |         | 1.65–12            |         |         |         |                    |         |         | 2.53-14            |         |         |         |                        |        |
| $0p_{3/2}$                                  | 1.22-11         | 6.87-12 | 3.87-12            | 2.17-12 | 1.22-12 | 6.85-13 | 3.81–13            |         |         | 5.30-14            |         |         |         |                        |        |
| $0d_{3/2}$                                  | 1.31-11         | 7.35–12 | 4.14-12            | 2.33-12 | 1.31-12 | 7.31–13 | 4.06-13            | 2.19-13 | 1.10-13 | 4.83-14            | 1.70–14 | 4.52-15 | 8.70-16 | 1.09–16                | 7.84-1 |
| $0d_{5/2}$                                  | 1.90-11         | 1.07-11 | 6.03-12            | 3.39-12 | 1.90-12 | 1.07-12 | 5.90-13            | 3.17-13 | 1.59–13 | 6.87-14            | 2.37-14 | 6.18-15 | 1.17-15 | 1.44-16                | 1.03-1 |
| $0f_{5/2}$                                  | 1.95-11         | 1.10-11 | 6.19-12            | 3.48-12 | 1.95-12 | 1.09-12 | 5.96-13            | 3.11-13 | 1.44-13 | 5.43-14            | 1.56-14 | 3.42-15 | 5.68-16 | 6.46-17                | 4.42-1 |
| $0f_{7/2}$                                  | 2.57-11         | 1.45-11 | 8.14-12            | 4.58-12 | 2.57-12 | 1.43-12 | 7.84-13            | 4.08-13 | 1.89-13 | 7.06-14            | 2.01-14 | 4.39-15 | 7.27-16 | 8.26-17                | 5.66-1 |
| $0g_{7/2}$                                  |                 |         | 7.78–12            |         |         |         |                    |         |         | 4.92-14            |         |         |         |                        |        |
| $\log_{1/2}$                                |                 |         | 9.64-12            |         |         |         |                    |         |         | 6.05-14            |         |         |         |                        |        |
| /-                                          |                 |         | 8.23-12            |         |         |         |                    |         |         | 3.68-14            |         |         |         |                        |        |
| $10h_{9/2}$                                 |                 |         | 9.81–12            |         |         |         |                    |         |         | 4.37–14            |         |         |         |                        |        |
| $10h_{11/2}$                                |                 |         |                    |         |         |         |                    |         |         |                    |         |         |         |                        |        |
| $10i_{11/2}$                                |                 |         | 7.11-12            |         |         |         |                    |         |         | 2.26-14            |         |         |         |                        |        |
| $10i_{13/2}$                                |                 |         | 8.26-12            |         |         |         |                    |         |         | 2.62-14            |         |         |         |                        |        |
| $1s_{1/2}$                                  |                 |         | 1.14-12            |         |         |         |                    |         |         | 1.74–14            |         |         |         |                        |        |
| $11p_{1/2}$                                 |                 |         | 1.27–12            |         |         |         |                    |         |         | 1.92–14            |         |         |         |                        |        |
| $1p_{3/2}$                                  |                 |         | 3.02-12            |         |         |         |                    |         |         | 4.05-14            |         |         |         |                        |        |
| $1d_{3/2}$                                  | 1.02-11         | 5.74-12 | 3.23-12            | 1.82-12 | 1.02-12 | 5.71-13 | 3.16-13            | 1.70–13 | 8.50-14 | 3.71-14            | 1.30–14 | 3.44-15 | 6.62-16 | 8.27-17                | 5.94-1 |
| $1d_{5/2}$                                  | 1.49–11         | 8.38-12 | 4.72–12            | 2.65-12 | 1.49–12 | 8.33-13 | 4.60-13            | 2.47-13 | 1.23-13 | 5.27-14            | 1.81–14 | 4.72–15 | 8.91–16 | 1.10–16                | 7.76-1 |
| $1f_{5/2}$                                  | 1.54-11         | 8.67-12 | 4.88-12            | 2.75-12 | 1.54-12 | 8.59-13 | 4.70-13            | 2.44-13 | 1.13–13 | 4.23-14            | 1.21-14 | 2.65-15 | 4.41-16 | 5.03-17                | 3.38-1 |
| $1f_{7/2}$                                  | 2.03-11         | 1.14-11 | 6.43-12            | 3.62-12 | 2.03-12 | 1.13-12 | 6.18-13            | 3.21-13 | 1.48-13 | 5.50-14            | 1.57-14 | 3.41-15 | 5.64-16 | 6.40-17                | 4.37-1 |
| 1g <sub>7/2</sub>                           |                 |         |                    |         |         |         | 5.90-13            |         |         |                    |         |         |         |                        |        |
| $1g_{9/2}$                                  |                 |         |                    |         |         |         | 7.31-13            |         |         |                    |         |         |         |                        |        |
| $1b_{9/2}$<br>$1h_{9/2}$                    |                 |         |                    |         |         |         | 6.32-13            |         |         | 3.12-14            |         |         |         |                        |        |
| $1h_{9/2}$<br>$1h_{11/2}$                   |                 |         | 8.36-12            |         |         |         |                    |         |         | 3.71-14            |         |         |         |                        |        |
|                                             |                 |         |                    |         |         |         |                    |         |         | 2.10-14            |         |         |         |                        |        |
| 1 <i>i</i> <sub>11/2</sub>                  |                 |         | 6.62-12            |         |         |         |                    |         |         | 2.10–14<br>2.43–14 |         |         |         |                        |        |
| $1i_{13/2}$                                 |                 |         | 7.69-12            |         |         |         |                    |         |         |                    |         |         |         |                        |        |
| $2s_{1/2}$                                  |                 |         | 9.09-13            |         |         |         |                    |         |         | 1.36-14            |         |         |         |                        |        |
| $2p_{1/2}$                                  |                 |         | 1.01-12            |         |         |         |                    |         |         | 1.49-14            |         |         |         |                        |        |
| $2p_{3/2}$                                  |                 |         | 2.42-12            |         |         |         |                    |         |         | 3.16-14            |         |         |         |                        |        |
| $2d_{3/2}$                                  |                 |         | 2.58-12            |         |         |         |                    |         |         | 2.90-14            |         |         |         |                        |        |
| $2d_{5/2}$                                  | 1.19–11         | 6.70-12 | 3.77-12            | 2.12-12 | 1.19–12 | 6.65-13 | 3.67-13            | 1.96-13 | 9.66-14 | 4.13-14            | 1.41-14 | 3.67-15 | 6.93-16 | 8.61-17                | 6.03-1 |
| $2f_{5/2}$                                  | 1.24–11         | 6.97-12 | 3.92-12            | 2.21-12 | 1.24–12 | 6.89-13 | 3.76-13            | 1.95–13 | 8.97-14 | 3.35-14            | 9.57-15 | 2.09-15 | 3.46-16 | 3.93–17                | 2.68-1 |
| $2f_{7/2}$                                  | 1.63-11         | 9.19-12 | 5.18-12            | 2.91-12 | 1.63-12 | 9.09-13 | 4.96-13            | 2.56-13 | 1.18-13 | 4.36-14            | 1.24-14 | 2.69-15 | 4.46-16 | 5.10-17                | 3.41-1 |
| $2g_{7/2}$                                  |                 |         | 5.15-12            |         |         |         |                    |         |         | 3.20-14            |         |         |         |                        |        |
| $2g_{9/2}$                                  |                 |         | 6.39-12            |         |         |         |                    |         |         | 3.94-14            |         |         |         |                        |        |
| $2b_{9/2}$<br>$2h_{9/2}$                    |                 |         | 5.94-12            |         |         |         |                    |         |         | 2.63-14            |         |         |         |                        |        |
| /-                                          |                 |         |                    |         |         |         |                    |         |         | 2.03-14<br>3.13-14 |         |         |         |                        |        |
| $12h_{11/2}$                                |                 |         | 7.10-12            |         |         |         |                    |         |         |                    |         |         |         |                        |        |
| $12i_{11/2}$                                |                 |         | 5.97-12            |         |         |         |                    |         |         | 1.89-14            |         |         |         |                        |        |
| 2i <sub>13/2</sub><br>otal                  |                 |         |                    |         |         |         | 5.95–13<br>2.29–10 |         |         | 2.19–14<br>2.42–11 |         |         |         |                        |        |
| <b>N<sup>72+</sup></b><br>2s <sub>1/2</sub> | 3.98-10         | 2.24–10 | 1.26–10            | 7.08–11 | 3.98–11 | 2.24–11 | 1.26–11            | 7.07-12 | 3.97-12 | 2.21–12            | 1.18–12 | 5.64–13 |         | 4.94–14<br>tinued on 1 |        |

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

| Shell -                                  | $\log_{10} T(K)$   |                    | 10      | 4.5      | 5.0                |         | 6.0                | 6.5                | 7.0                | 7.5                | 0.0                | 0.5                | 0.0      | 0.5                | 10.0             |
|------------------------------------------|--------------------|--------------------|---------|----------|--------------------|---------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|--------------------|------------------|
|                                          | 3.0                | 3.5                | 4.0     | 4.5      | 5.0                | 5.5     | 6.0                | 6.5                | 7.0                | 7.5                | 8.0                | 8.5                | 9.0      | 9.5                | 10.0             |
| $2p_{1/2}$                               | 4.82-10            | 2.71-10            | 1.52-10 | 8.57-11  | 4.82-11            | 2.71-11 | 1.52-11            | 8.47-12            | 4.64-12            | 2.43-12            | 1.14–12            | 4.32-13            | 1.20-13  | 2.11-14            | 2.29-15          |
| $2p_{3/2}$                               | 7.68–10            | 4.32-10            |         |          | 7.68–11            | 4.32–11 |                    |                    |                    | 3.77-12            |                    | 6.09–13            | 1.56–13  |                    |                  |
| $3s_{1/2}$                               | 1.28-10            | 7.19–11            | 4.04–11 |          | 1.28-11            |         | 4.05-12            |                    |                    | 7.14–13            | 3.82-13            | 1.79–13            | 6.42-14  | 1.49–14            | 2.20-15          |
| $3p_{1/2}$                               | 1.58–10            | 8.89–11            |         |          | 1.58–11            |         | 4.99-12            |                    | 1.54–12            |                    | 3.85-13            |                    |          | 7.17–15            |                  |
| $3p_{3/2}$                               | 2.91-10            | 1.64–10            | 9.20-11 | 5.17-11  |                    | 1.63–11 | 9.16-12            |                    |                    |                    | 6.45-13            | 2.29–13            | 5.82-14  |                    | 8.76-1           |
| $3d_{3/2}$                               | 2.16-10            | 1.21–10            |         | 3.84–11  |                    | 1.21–11 | 6.73-12            |                    | 1.90–12            | 8.63-13            | 3.16-13            |                    | 1.71–14  |                    | 1.59-1           |
| $Bd_{5/2}$                               | 2.98-10            | 1.68–10            | 9.42-11 | 5.30-11  | 2.98-11            | 1.67–11 | 9.28-12            |                    |                    | 1.17–12            |                    |                    |          |                    |                  |
| $4s_{1/2}$                               | 5.76-11            | 3.24-11            |         |          | 5.76-12            |         | 1.82-12            |                    | 5.78-13            |                    | 1.69-13            |                    | 2.75-14  | 6.30-15            |                  |
| $4p_{1/2}$                               | 7.00-11            | 3.93-11            |         | 1.24-11  |                    | 3.93-12 |                    |                    | 6.85-13            |                    | 1.72-13            |                    |          | 3.15-15            |                  |
| $4p_{3/2}$                               | 1.39-10            | 7.84–11            | 4.41-11 |          | 1.39–11            | 7.83-12 |                    |                    | 1.33–12            | 6.82-13            | 3.04-13            | 1.07-13            | 2.68-14  | 4.23-15            | 3.97-1           |
| $4d_{3/2}$                               | 1.31-10            | 7.35-11            |         |          | 1.31-11            |         |                    |                    | 1.15-12            |                    | 1.92-13            |                    | 1.03-14  |                    | 9.59-1           |
| $4d_{5/2}$                               | 1.84-10            | 1.04-10            | 5.82-11 | 3.27-11  | 1.84-11            | 1.03-11 | 5.74-12            |                    | 1.61-12            | 7.26-13            | 2.61-13            |                    | 1.35-14  |                    | 1.23-1           |
| $4f_{5/2}$                               | 1.03-10            | 5.78-11            | 3.25-11 | 1.83-11  |                    |         | 3.15-12            |                    | 7.86-13            | 3.05-13            |                    | 2.01-14            |          | 3.86-16            | 2.64-1           |
| $4f_{7/2}$                               | 1.32-10            | 7.43-11            | 4.18-11 |          | 1.32-11            | 7.36-12 | 4.04-12            | 2.13-12            | 1.01-12            | 3.88-13            | 1.14-13            | 2.53-14            | 4.24-15  | 4.84-16            | 3.31-1           |
| os <sub>1/2</sub>                        | 3.13-11            | 1.76-11            | 9.91-12 | 5.57-12  | 3.14-12            | 1.76-12 | 9.92-13            | 5.58-13            | 3.13-13            | 1.73-13            | 8.98-14            |                    | 1.41-14  | 3.21-15            | 4.65-1           |
| $p_{1/2}$                                | 3.72-11            | 2.09-11            |         | 6.63-12  |                    | 2.09-12 | 1.18-12            | 6.60-13            | 3.66-13            | 1.94–13            | 9.10-14            | 3.44-14            | 9.40-15  |                    | 1.75-1           |
| $p_{3/2}$                                | 7.81-11            | 4.39-11            |         | 1.39-11  | 7.81-12            | 4.39-12 | 2.46-12            |                    | 7.42-13            | 3.77-13            | 1.66-13            |                    | 1.44-14  | 2.26-15            | 2.10-1           |
| $d_{3/2}$                                | 7.89-11            | 4.44-11            |         |          | 7.89-12            |         |                    | 1.35-12            |                    | 3.16-13            | 1.15-13            |                    | 6.12-15  | 7.74-16            | 5.68-1           |
| $d_{5/2}$                                | 1.13-10            | 6.33-11            | 3.56-11 | 2.00-11  | 1.12-11            |         | 3.51-12            | 1.91-12            |                    | 4.41-13            | 1.58-13            | 4.22-14            | 8.11-15  | 1.01-15            | 7.34-1           |
| $5f_{5/2}$                               | 8.83-11            | 4.97-11            | 2.79-11 | 1.57-11  | 8.81-12            | 4.92-12 | 2.71-12            | 1.43-12            | 6.77-13            | 2.62-13            | 7.73-14            | 1.72-14            | 2.89-15  | 3.31-16            | 2.26-1           |
| $5f_{7/2}$                               | 1.14-10            | 6.44-11            |         |          | 1.14-11            |         |                    |                    | 8.72-13            | 3.36-13            | 9.86-14            | 2.19-14            | 3.66-15  | 4.17-16            | 2.86-1           |
| 9 <sub>7/2</sub>                         | 5.06-11            | 2.85-11            | 1.60-11 | 9.00-12  |                    |         | 1.51-12            | 7.57-13            | 3.23-13            | 1.07-13            | 2.68-14            | 5.30-15            | 8.32-16  | 9.21-17            | 6.22-1           |
| 5g <sub>9/2</sub>                        | 6.20-11            | 3.49-11            |         |          | 6.17-12            |         |                    |                    |                    | 1.30-13            |                    |                    |          | 1.12-16            |                  |
| 5s <sub>1/2</sub>                        | 1.92-11            | 1.08-11            |         |          | 1.92-12            |         |                    |                    | 1.90-13            | 1.04-13            |                    | 2.38-14            | 8.20-15  | 1.85-15            |                  |
| $5p_{1/2}$                               | 2.24-11            | 1.26-11            |         |          | 2.24-12            |         |                    | 3.96-13            |                    | 1.16-13            | 5.39-14            | 2.02-14            | 5.50-15  |                    | 1.01-1           |
| $5p_{3/2}$                               | 4.85-11            | 2.73-11            |         |          | 4.86-12            |         |                    | 8.48-13            | 4.58-13            | 2.31-13            | 1.00-13            |                    |          |                    | 1.24-1           |
| $5d_{3/2}$                               | 5.06-11            | 2.85-11            | 1.60-11 | 9.01-12  | 5.06-12            |         | 1.58-12            | 8.62-13            | 4.44-13            | 2.01-13            | 7.25-14            | 1.97-14            | 3.84-15  | 4.84-16            | 3.55-1           |
| 6d <sub>5/2</sub>                        | 7.27-11            | 4.09-11            |         |          | 7.27-12            |         |                    |                    | 6.32-13            | 2.82-13            | 1.00-13            | 2.67-14            | 5.11-15  | 6.35-16            | 4.61-1           |
| $5f_{5/2}$                               | 6.53-11            | 3.67-11            |         | 1.16-11  |                    | 3.64-12 | 2.00-12            |                    | 4.99-13            | 1.93-13            |                    |                    | 2.12-15  | 2.42-16            | 1.66-1           |
| $5f_{7/2}$                               | 8.50-11            | 4.78-11            | 2.69-11 | 1.51-11  | 8.48-12            | 4.73-12 | 2.60-12            | 1.37-12            | 6.46-13            | 2.49-13            | 7.27-14            | 1.61-14            | 2.69-15  | 3.06-16            | 2.09-1           |
| 5g <sub>7/2</sub>                        | 5.66-11            | 3.18-11            |         | 1.01-11  | 5.63-12            |         | 1.69-12            | 8.46-13            | 3.61-13            | 1.20-13            | 3.00-14            | 5.92-15            | 9.28-16  | 1.03-16            | 6.95-1           |
| $5g_{9/2}$                               | 6.95-11            | 3.91-11            |         | 1.24-11  | 6.92-12            | 3.84-12 | 2.07-12            | 1.04-12            | 4.43-13            | 1.46-13            | 3.66-14            | 7.21-15            | 1.13-15  | 1.25-16            | 8.45-1           |
| 6h <sub>9/2</sub>                        | 2.53-11            | 1.43-11            |         |          | 2.51-12            |         | 7.28-13            |                    | 1.31-13            | 3.78-14            |                    | 1.56-15            | 2.37-16  | 2.59-17            | 1.74-1           |
| $6h_{11/2}$                              | 3.00–11<br>1.27–11 | 1.69–11<br>7.16–12 |         |          | 2.98–12<br>1.27–12 |         | 8.62–13<br>4.02–13 | 4.06–13<br>2.25–13 | 1.55–13<br>1.25–13 | 4.46–14<br>6.75–14 |                    | 1.84–15<br>1.51–14 | 2.79-16  | 3.05–17<br>1.16–15 | 2.06-1<br>1.67-1 |
| 7s <sub>1/2</sub><br>7n                  | 1.27-11            | 8.22-12            |         | 2.20-12  |                    | 8.22-13 | 4.02-13            | 2.23-13            | 1.43-13            | 6.75-14<br>7.46-14 |                    | 1.29–14            | 3.48-15  | 6.02-16            | 6.40-1           |
| 7p <sub>1/2</sub><br>7n                  | 3.25-11            | 1.83–11            | 4.02-12 |          | 1.40-12<br>3.25-12 | 1.83-12 | 4.02-13            | 5.66–13            | 3.04-13            | 1.51-13            | 6.52–14            | 2.23-14            | 5.48-15  | 8.53-16            | 7.91-1           |
| 7p <sub>3/2</sub>                        | 3.44-11            | 1.93-11            |         |          | 3.23-12<br>3.44-12 |         | 1.02-12            | 5.84-13            | 3.04-13            | 1.35-13            |                    | 1.31-14            |          | 3.20-16            | 2.34-1           |
| 7d <sub>3/2</sub><br>7d                  | 3.44-11<br>4.96-11 | 2.79-11            | 1.57-11 |          | 3.44-12<br>4.96-12 |         | 1.54-12            | 5.84-15<br>8.39-13 | 4.28-13            | 1.55-15            |                    | 1.51-14            | 2.34-15  | 4.21–16            | 3.05-1           |
| 7d <sub>5/2</sub><br>7f                  | 4.90-11            |                    |         |          | 4.90-12            |         |                    |                    | 4.28-13<br>3.62-13 | 1.40-13            | 4.09-14            |                    |          |                    | 1.19-1           |
| 7f <sub>5/2</sub><br>7f                  | 6.22-11            | 3.50-11            |         | 1.11-11  |                    | 3.46-12 | 1.90-12            | 1.00-12            | 4.71-13            | 1.80-13            | 4.03-14<br>5.26-14 |                    | 1.94-15  | 2.21-16            | 1.51-1           |
| 7f <sub>7/2</sub>                        | 4.93-11            | 2.77-11            | 1.56-11 | 8.77–12  | 0.20-12<br>4.91-12 | 2.73-12 | 1.47-12            | 7.38–13            | 4.71-13<br>3.15-13 | 1.04-13            | 2.60-14            | 5.14-15            | 8.05-16  | 2.21-10<br>8.91-17 | 6.02-1           |
| 7g <sub>7/2</sub>                        | 4.93-11<br>6.08-11 |                    |         |          | 4.91-12<br>6.05-12 |         | 1.47-12            |                    | 3.87-13            | 1.28-13            |                    | 6.27-15            |          |                    | 7.34-1           |
| 7g <sub>9/2</sub><br>7h                  |                    |                    | 1.52-11 |          | 0.05-12<br>3.46-12 |         | 1.00-12            |                    | 1.81-13            |                    | 1.16-14            |                    |          | 3.57-17            |                  |
| 7h <sub>9/2</sub><br>7h                  |                    |                    |         |          |                    |         |                    | 4.75-15<br>5.61-13 |                    |                    |                    |                    |          |                    |                  |
| 7h <sub>11/2</sub><br>7i <sub>11/2</sub> |                    |                    |         |          | 4.11-12            |         |                    |                    |                    | 0.10-14<br>1.35-14 |                    |                    |          |                    |                  |
| $7i_{11/2}$<br>$7i_{13/2}$               |                    |                    |         |          | 1.27-12            |         |                    |                    |                    | 1.56-14            |                    |                    |          |                    |                  |
| $s_{1/2}$                                |                    |                    |         |          | 8.95–12            |         |                    |                    |                    | 4.64-14            |                    |                    |          |                    |                  |
| $p_{1/2}^{3}$                            |                    |                    |         |          | 1.02-12            |         |                    |                    |                    | 4.04-14<br>5.10-14 |                    |                    |          |                    |                  |
| $3p_{3/2}$                               |                    |                    |         |          | 2.30-12            |         |                    |                    |                    | 1.05-13            |                    |                    |          |                    |                  |
| 3d <sub>3/2</sub>                        |                    |                    |         |          | 2.30-12            |         |                    |                    |                    | 9.43-14            |                    |                    |          |                    |                  |
| 3/2<br>$3d_{5/2}$                        |                    |                    |         |          | 3.54-12            |         |                    |                    |                    | 1.33-13            |                    |                    |          |                    |                  |
| $Sf_{5/2}$                               |                    |                    |         |          | 3.52-12            |         |                    |                    |                    | 1.02-13            |                    |                    |          |                    |                  |
| $f_{7/2}$                                |                    |                    |         |          | 4.61-12            |         |                    |                    |                    | 1.33-13            |                    |                    |          |                    |                  |
| 97/2<br>8g <sub>7/2</sub>                |                    |                    |         |          | 4.01-12            |         |                    |                    |                    | 8.45-14            |                    |                    |          |                    |                  |
| 887/2<br>889/2                           |                    |                    |         |          | 4.96-12            |         |                    |                    |                    | 1.04-13            |                    |                    |          |                    |                  |
| 3h <sub>9/2</sub>                        |                    |                    |         |          | 3.49-12            |         |                    |                    |                    | 5.23-14            |                    |                    |          |                    |                  |
| $h_{11/2}^{m_{9/2}}$                     |                    |                    |         |          | 4.14-12            |         |                    |                    |                    | 6.19–14            |                    |                    |          |                    |                  |
| $Bi_{11/2}$                              |                    |                    |         |          | 2.08-12            |         |                    |                    |                    | 2.22-14            |                    |                    |          |                    |                  |
| $3i_{11/2}$<br>$3i_{13/2}$               |                    |                    |         |          | 2.41-12            |         |                    |                    |                    | 2.22-14            |                    |                    |          |                    |                  |
| $s_{1/2}$                                |                    |                    |         |          | 6.58-13            |         |                    |                    |                    | 3.33-14            |                    |                    |          |                    |                  |
| $\frac{9p_{1/2}}{p_{1/2}}$               |                    |                    |         |          | 7.38-13            |         |                    |                    |                    | 3.64-14            |                    |                    |          |                    |                  |
| $p_{1/2}$                                |                    |                    |         |          | 1.70-12            |         |                    |                    |                    | 7.55-14            |                    |                    |          |                    |                  |
| $\partial d_{3/2}$                       |                    |                    |         |          | 1.81-12            |         |                    |                    |                    | 6.85-14            |                    |                    |          |                    |                  |
| $d_{5/2}$                                |                    |                    |         |          |                    |         |                    | 4.40-13            |                    |                    |                    |                    |          |                    |                  |
| <b>~~</b> 5/2                            | 2.02 -11           | 1.10 11            | 0.00 12 | 1.57 -12 | 2.32 -12           | 1.17 12 | 5.15 15            | 1. 10 - 13         | L1- 22.2           | 5.71 14            | 5.55-14            | 5.51 · IJ          | 1.55 -15 | 2.10 10            | 1.51-1           |
|                                          |                    |                    |         |          |                    |         |                    |                    |                    |                    |                    |                    |          |                    |                  |

| Table 1 ( | (continued) |
|-----------|-------------|
|-----------|-------------|

|                                          | 3.0     | 3.5     | 4.0                | 4.5     | 5.0     | 5.5     | 6.0     | 6.5     | 7.0     | 7.5                | 8.0     | 8.5     | 9.0     | 9.5         | 10.0             |
|------------------------------------------|---------|---------|--------------------|---------|---------|---------|---------|---------|---------|--------------------|---------|---------|---------|-------------|------------------|
| $9f_{5/2}$                               | 2.66-11 | 1.50-11 | 8.43-12            | 4.74-12 | 2.66-12 | 1.48-12 | 8.15-13 | 4.28-13 | 2.01-13 | 7.67-14            | 2.23-14 | 4.94-15 | 8.26-16 | 9.42-17     | 6.45-1           |
| $f_{7/2}$                                | 3.50-11 |         | 1.11-11            |         |         |         |         | 5.60-13 | 2.62-13 | 9.95-14            | 2.88-14 |         |         |             |                  |
| $g_{7/2}$                                | 3.23-11 | 1.82-11 | 1.02-11            | 5.75-12 | 3.22-12 | 1.79-12 | 9.64-13 | 4.83-13 | 2.05-13 | 6.75-14            | 1.68-14 | 3.31-15 | 5.19-16 | 5.74-17     | 3.88-1           |
| )g <sub>9/2</sub>                        | 4.00-11 | 2.25-11 | 1.27-11            | 7.11-12 | 3.98-12 | 2.21-12 | 1.19-12 | 5.96-13 | 2.53-13 | 8.29-14            | 2.06-14 | 4.05-15 | 6.34-16 | 7.01-17     | 4.74-1           |
| $h_{9/2}$                                | 3.18-11 | 1.79-11 | 1.01-11            | 5.65-12 | 3.15-12 | 1.73-12 | 9.13-13 | 4.30-13 | 1.64-13 | 4.71-14            | 1.05-14 | 1.94-15 | 2.94-16 | 3.22-17     | 2.17-1           |
| $h_{11/2}$                               | 3.78-11 | 2.13-11 | 1.20-11            | 6.72-12 | 3.75-12 | 2.06-12 | 1.09-12 | 5.11-13 | 1.94-13 | 5.58-14            | 1.24-14 | 2.29-15 | 3.48-16 | 3.81-17     | 2.56-1           |
| $i_{11/2}$                               | 2.40-11 | 1.35-11 | 7.59–12            | 4.26-12 | 2.37-12 | 1.29-12 | 6.56-13 | 2.88-13 | 9.84-14 | 2.53-14            | 5.22-15 | 9.27-16 | 1.39–16 | 1.51–17     | 1.02-1           |
| $i_{13/2}$                               | 2.78-11 | 1.56-11 | 8.80-12            | 4.94-12 | 2.75-12 | 1.49-12 | 7.61-13 | 3.34-13 | 1.14-13 | 2.93-14            | 6.04-15 | 1.07-15 | 1.60-16 | 1.75–17     | 1.17-1           |
| $10s_{1/2}$                              | 4.99-12 | 2.81-12 | 1.58-12            | 8.89-13 | 5.00-13 | 2.81-13 | 1.57-13 | 8.70-14 | 4.72-14 | 2.47-14            | 1.21-14 | 5.24-15 | 1.77-15 | 3.95-16     | 5.65-1           |
| $10p_{1/2}$                              | 5.56-12 | 3.13-12 | 1.76-12            | 9.90-13 | 5.57-13 | 3.13-13 | 1.75–13 | 9.72-14 | 5.26-14 | 2.69-14            | 1.22-14 | 4.48-15 | 1.20-15 | 2.07-16     | 2.20-1           |
| $0p_{3/2}$                               | 1.30–11 | 7.30–12 | 4.11-12            | 2.31-12 | 1.30–12 | 7.28-13 | 4.05-13 | 2.21-13 | 1.16–13 | 5.62-14            | 2.36-14 | 7.93–15 | 1.93–15 | 2.99–16     | 2.76-1           |
| $0d_{3/2}$                               | 1.38–11 | 7.74–12 | 4.36-12            | 2.45-12 | 1.38–12 | 7.71–13 | 4.28-13 | 2.31-13 | 1.17–13 | 5.13-14            | 1.81–14 | 4.84-15 | 9.37-16 | 1.17–16     | 8.42-1           |
| $0d_{5/2}$                               | 2.00-11 | 1.13–11 | 6.35-12            | 3.57-12 | 2.00-12 | 1.12–12 | 6.21-13 | 3.34–13 | 1.68–13 | 7.28–14            | 2.53-14 | 6.63-15 | 1.26-15 | 1.56–16     | 1.12-1           |
| $0f_{5/2}$                               | 2.06-11 | 1.16-11 | 6.52-12            | 3.67-12 | 2.06-12 | 1.15–12 | 6.30-13 | 3.30-13 | 1.54–13 | 5.86-14            | 1.70–14 | 3.76-15 | 6.28-16 | 7.16–17     | 4.90-1           |
| $0f_{7/2}$                               | 2.71-11 | 1.52-11 | 8.58-12            | 4.82-12 | 2.71-12 | 1.51–12 | 8.28-13 | 4.32-13 | 2.01-13 | 7.61–14            | 2.20-14 | 4.82-15 | 8.02-16 | 9.13-17     | 6.25-1           |
| 0g <sub>7/2</sub>                        | 2.60-11 | 1.46-11 | 8.22-12            | 4.62-12 | 2.59-12 | 1.44–12 | 7.74–13 | 3.87-13 | 1.64–13 | 5.38-14            | 1.34–14 | 2.64-15 | 4.13–16 | 4.57–17     | <b>3.09</b> -1   |
| $10g_{9/2}$                              |         |         | 1.02-11            |         |         |         |         | 4.78-13 | 2.02-13 | 6.62–14            | 1.64–14 | 3.23-15 | 5.05-16 | 5.58-17     | <b>3.77</b> –1   |
| $0h_{9/2}$                               | 2.75-11 | 1.55–11 | 8.71-12            | 4.89-12 | 2.73-12 | 1.50-12 | 7.91–13 | 3.72-13 | 1.41-13 | 4.06-14            | 9.05-15 | 1.67–15 | 2.53-16 | 2.77-17     | 1.87-1           |
| $0h_{11/2}$                              |         |         | 1.04–11            |         |         |         |         |         |         | 4.82-14            |         |         |         |             |                  |
| $0i_{11/2}$                              |         |         | 7.54-12            |         |         |         |         |         |         | 2.51-14            |         |         |         |             |                  |
| 0 <i>i</i> <sub>13/2</sub>               |         |         | 8.74-12            |         |         |         |         |         |         | 2.90-14            |         |         |         | 1.73-17     |                  |
| 1s <sub>1/2</sub>                        |         |         | 1.23-12            |         |         | 2.19-13 |         | 6.74-14 |         | 1.88-14            |         | 3.94-15 |         | 2.96-16     |                  |
| $1p_{1/2}$                               |         |         | 1.36-12            |         |         |         |         |         |         | 2.05-14            |         |         |         |             |                  |
| $1p_{3/2}$                               |         |         | 3.22-12            |         |         |         |         |         |         | 4.29-14            |         |         |         |             |                  |
| $1d_{3/2}$                               |         |         | 3.41-12            |         |         |         |         |         |         | 3.93-14            |         |         |         | 8.90-17     |                  |
| $1d_{5/2}$                               |         |         | 4.97-12            |         |         |         |         |         |         | 5.59-14            |         |         |         |             |                  |
| $1f_{5/2}$                               |         |         | 5.15-12            |         |         |         |         |         |         | 4.57-14            |         |         |         | 5.56-17     |                  |
| $1f_{7/2}$                               |         |         | 6.78-12            |         |         |         |         |         |         | 5.94-14            |         |         |         |             |                  |
| 1g <sub>7/2</sub>                        |         |         | 6.66-12            |         |         |         |         |         |         | 4.32-14            |         |         |         | 3.66-17     |                  |
| 1g <sub>9/2</sub>                        |         |         | 8.26-12            |         |         |         |         |         |         | 5.32-14            |         |         |         | 4.47-17     |                  |
| $1h_{9/2}$                               |         |         | 7.42-12            |         |         |         |         |         |         | 3.44-14            |         |         |         |             |                  |
| $1h_{11/2}$                              |         |         | 8.85-12            |         |         |         |         |         |         | 4.09-14            |         |         |         |             |                  |
| $1i_{11/2}$                              |         |         | 7.01-12            |         |         |         |         |         |         | 2.32-14            |         |         |         |             |                  |
| $11i_{13/2}$                             |         |         | 8.15-12            |         |         |         |         |         |         | 2.69-14            |         |         | 1.47-16 | 1.61-17     |                  |
| $12s_{1/2}$                              |         |         | 9.85–13<br>1.08–12 |         |         |         |         |         |         | 1.46–14<br>1.59–14 |         |         |         |             | 3.25-1<br>1.26-1 |
| $12p_{1/2}$                              |         |         | 2.57-12            |         |         |         |         |         |         | 3.35-14            |         |         |         |             | 1.60-1           |
| 12p <sub>3/2</sub><br>12d <sub>3/2</sub> |         |         | 2.72-12            |         |         |         |         |         |         | 3.08-14            |         |         |         | 6.93–17     |                  |
| $12d_{3/2}$<br>$12d_{5/2}$               |         |         | 3.97-12            |         |         |         |         |         |         | 4.39-14            |         |         |         |             |                  |
| $12u_{5/2}$<br>$12f_{5/2}$               |         |         | 4.13-12            |         |         |         |         |         |         | 3.62-14            |         |         |         |             |                  |
| $2f_{7/2}$                               |         |         | 5.45-12            |         |         |         |         |         |         | 4.71-14            |         |         |         | 5.58-17     |                  |
| /=                                       |         |         | 5.45-12<br>5.45-12 |         |         |         |         |         |         | 3.50-14            |         |         |         | 2.95-17     |                  |
| $2g_{7/2}$<br>$2g_{9/2}$                 |         |         | 5.45-12<br>6.76-12 |         |         |         |         |         |         | 3.30-14<br>4.31-14 |         |         |         |             |                  |
| $2g_{9/2}$<br>$2h_{9/2}$                 |         |         | 6.29–12<br>6.29–12 |         |         |         |         |         |         | 4.31-14<br>2.90-14 |         |         |         |             |                  |
| $2h_{9/2}$<br>$2h_{11/2}$                |         |         |                    |         |         |         | 6.80–13 |         |         |                    |         |         |         |             |                  |
| $2i_{11/2}$                              |         |         |                    |         |         |         | 5.46–13 |         |         | 2.09-14            |         |         |         |             |                  |
| $12i_{11/2}$<br>$12i_{13/2}$             |         |         | 0.32-12<br>7.34-12 |         |         |         |         |         |         | 2.09-14            |         |         |         |             |                  |
| otal                                     |         |         | 2.68-09            |         |         |         |         |         |         | 2.75-11            |         |         |         |             |                  |
| N <sup>73+</sup>                         |         |         |                    |         |         |         |         |         |         |                    |         |         |         |             |                  |
| s <sub>1/2</sub>                         | 1.34-09 | 7.53–10 | 4.23-10            | 2.38-10 | 1.34–10 | 7.52–11 | 4.23-11 | 2.37-11 | 1.33-11 | 7.31–12            | 3.87-12 | 1.84-12 | 6.90-13 | 1.72-13     | 2.75-1           |
| 2s <sub>1/2</sub>                        |         |         | 1.29-10            |         |         |         |         |         |         | 2.26-12            |         |         |         |             |                  |
| $2p_{1/2}$                               |         |         | 1.56-10            |         |         |         |         |         |         | 2.50-12            |         |         |         |             |                  |
| $p_{3/2}$                                |         |         | 2.48-10            |         |         |         |         |         |         | 3.86-12            |         |         |         |             |                  |
| s <sub>1/2</sub>                         |         |         | 4.18-11            |         |         |         |         | 2.35-12 | 1.32-12 | 7.37-13            | 3.93-13 | 1.84–13 | 6.59-14 | 1.53-14     | 2.26-1           |
| $p_{1/2}$                                | 1.62-10 | 9.12-11 | 5.13-11            | 2.88-11 | 1.62–11 | 9.11-12 | 5.12-12 | 2.86-12 | 1.58-12 | 8.36-13            | 3.97-13 | 1.53-13 | 4.24-14 | 7.49–15     | 8.09-1           |
| $p_{3/2}$                                | 2.98-10 | 1.68-10 | 9.42-11            | 5.30-11 | 2.98-11 | 1.67-11 | 9.39-12 | 5.23-12 | 2.85-12 | 1.47-12            | 6.63-13 | 2.37-13 | 6.04-14 | 9.64-15     | 9.14-1           |
| $d_{3/2}$                                | 2.22-10 | 1.25-10 | 7.03-11            | 3.95-11 | 2.22-11 | 1.25-11 | 6.94-12 | 3.79-12 | 1.96-12 | 8.96-13            | 3.30-13 | 9.12-14 | 1.80-14 | 2.29-15     | 1.69-1           |
| $3d_{5/2}$                               | 3.06-10 | 1.72-10 | 9.69-11            | 5.45-11 | 3.06-11 | 1.72–11 | 9.55-12 | 5.21-12 | 2.68-12 | 1.22-12            | 4.41-13 | 1.20-13 | 2.33-14 | 2.92-15     | 2.13-1           |
| $4s_{1/2}$                               | 5.97-11 | 3.36-11 | 1.89–11            | 1.06-11 | 5.97-12 | 3.36-12 | 1.89-12 | 1.06-12 | 5.98-13 | 3.32-13            | 1.75-13 | 8.04-14 | 2.83-14 | 6.48-15     | 9.42-1           |
| $4p_{1/2}$                               | 7.18–11 | 4.04-11 | 2.27-11            | 1.28-11 | 7.18–12 | 4.04-12 | 2.27-12 | 1.27-12 | 7.03-13 | 3.74-13            | 1.77-13 | 6.78-14 | 1.87–14 | 3.29-15     | 3.53-1           |
| $4p_{3/2}$                               | 1.43-10 | 8.04-11 | 4.52-11            | 2.54-11 | 1.43–11 | 8.03-12 | 4.50-12 | 2.51-12 | 1.37-12 | 7.01-13            | 3.13-13 | 1.11-13 | 2.79-14 | 4.41-15     | 4.15-1           |
| $4d_{3/2}$                               |         |         |                    |         |         |         | 4.20-12 | 2.30-12 | 1.19–12 | 5.44-13            | 2.00-13 | 5.52-14 | 1.09-14 | 1.38-15     | 1.02-1           |
| $4d_{5/2}$                               |         |         |                    |         |         |         | 5.90-12 |         |         |                    |         |         |         |             |                  |
| 4f <sub>5/2</sub>                        |         |         |                    |         |         |         | 3.25-12 |         |         |                    |         |         |         |             |                  |
| 4f <sub>7/2</sub>                        |         |         |                    |         |         |         | 4.16-12 |         |         |                    |         |         |         |             |                  |
|                                          |         |         |                    |         |         |         |         |         |         |                    |         |         |         | tinued on i |                  |

| Shell -                                | $\log_{10} T(K)$ | .)                 |         |         |         |          |                    |         |         |         |                    |         |         |         |            |
|----------------------------------------|------------------|--------------------|---------|---------|---------|----------|--------------------|---------|---------|---------|--------------------|---------|---------|---------|------------|
|                                        | 3.0              | 3.5                | 4.0     | 4.5     | 5.0     | 5.5      | 6.0                | 6.5     | 7.0     | 7.5     | 8.0                | 8.5     | 9.0     | 9.5     | 10.0       |
| $5s_{1/2}$                             | 3.25-11          | 1.83-11            | 1.03-11 | 5.79-12 | 3.25-12 | 1.83–12  | 1.03-12            | 5.79-13 | 3.25-13 | 1.79–13 | 9.28-14            | 4.20-14 | 1.46-14 | 3.31-15 | 4.78-1     |
| $5p_{1/2}$                             | 3.82-11          | 2.15-11            | 1.21-11 | 6.80-12 | 3.82-12 | 2.15-12  | 1.21-12            | 6.77-13 | 3.75-13 | 1.99-13 | 9.39-14            | 3.56-14 | 9.78-15 | 1.71-15 | 1.83-1     |
| $5p_{3/2}$                             | 8.02-11          | 4.51-11            | 2.54-11 | 1.43-11 | 8.01-12 | 4.50-12  | 2.52-12            | 1.40-12 | 7.62-13 | 3.88-13 | 1.71-13            | 5.98-14 | 1.49–14 | 2.35-15 | 2.20-1     |
| 5d <sub>3/2</sub>                      | 8.12-11          | 4.57-11            | 2.57-11 | 1.44-11 | 8.12-12 | 4.55-12  | 2.54-12            | 1.39-12 | 7.18–13 | 3.27-13 | 1.20-13            | 3.29–14 | 6.47-15 | 8.19–16 | 6.04-1     |
| $5d_{5/2}$                             | 1.16–10          | 6.50-11            | 3.66-11 | 2.06-11 | 1.16–11 | 6.48-12  | 3.61-12            | 1.97–12 | 1.01-12 | 4.57-13 | 1.64–13            | 4.42–14 | 8.54-15 | 1.07-15 | 7.77-1     |
| $f_{5/2}$                              | 9.09-11          | 5.12-11            | 2.88-11 | 1.62-11 | 9.07-12 | 5.07-12  | 2.79-12            | 1.47-12 | 7.01-13 | 2.73-13 | 8.11-14            | 1.82–14 | 3.06-15 | 3.50-16 | 2.40-1     |
| $f_{7/2}$                              | 1.18–10          | 6.62-11            | 3.72-11 | 2.09-11 | 1.17–11 | 6.56-12  | 3.61-12            | 1.90-12 | 9.03-13 | 3.50-13 | 1.03–13            | 2.31-14 | 3.87-15 | 4.42-16 | 3.02-1     |
| g <sub>7/2</sub>                       | 5.21-11          | 2.93-11            | 1.65–11 | 9.26-12 | 5.19-12 | 2.88-12  | 1.56-12            | 7.83–13 | 3.36-13 | 1.12–13 | 2.83-14            | 5.61-15 | 8.80-16 | 9.76-17 | 6.60-1     |
| g <sub>9/2</sub>                       | 6.38-11          | 3.59-11            | 2.02-11 | 1.13–11 | 6.35-12 | 3.52-12  | 1.90-12            | 9.57-13 | 4.10-13 | 1.36–13 | 3.43-14            | 6.80-15 | 1.07-15 | 1.18–16 | 7.99-1     |
| s <sub>1/2</sub>                       | 1.99–11          | 1.12-11            | 6.30-12 | 3.55-12 | 1.99-12 | 1.12–12  | 6.31-13            | 3.54-13 | 1.98–13 | 1.08-13 | 5.51-14            | 2.46-14 | 8.46-15 | 1.91–15 | 2.75-1     |
| $p_{1/2}$                              | 2.29-11          | 1.29–11            | 7.26–12 | 4.08-12 | 2.30-12 | 1.29–12  | 7.25-13            | 4.07-13 | 2.25-13 | 1.19–13 | 5.56-14            | 2.09-14 | 5.72-15 | 9.96-16 | 1.06-1     |
| $p_{3/2}$                              | 4.99-11          | 2.81-11            | 1.58–11 | 8.87-12 | 4.99-12 | 2.80-12  | 1.57–12            | 8.71-13 | 4.71-13 | 2.37-13 | 1.04-13            | 3.58-14 | 8.88-15 | 1.39–15 | 1.30-1     |
| d <sub>3/2</sub>                       | 5.21-11          | 2.93-11            | 1.65–11 | 9.27-12 | 5.21-12 | 2.92-12  | 1.63–12            |         |         |         | 7.56–14            |         |         |         | 3.78-1     |
| $d_{5/2}$                              | 7.47-11          | 4.20-11            | 2.36-11 | 1.33–11 | 7.47-12 | 4.19-12  | 2.33-12            | 1.27-12 | 6.51-13 | 2.92-13 | 1.04-13            | 2.80-14 | 5.38-15 | 6.70-16 | 4.89-1     |
| $f_{5/2}$                              | 6.72-11          | 3.78-11            | 2.13-11 | 1.19–11 | 6.70-12 | 3.74-12  | 2.06-12            | 1.09-12 | 5.17-13 | 2.01-13 | 5.95-14            | 1.33–14 | 2.24-15 | 2.56-16 | 1.76-1     |
| $f_{7/2}$                              |                  | 4.92-11            |         |         |         |          |                    |         |         |         | 7.62–14            |         |         |         | 2.22-1     |
| g <sub>7/2</sub>                       |                  | 3.27-11            |         |         |         |          |                    |         |         |         | 3.15-14            |         |         |         | 7.36-1     |
| g <sub>9/2</sub>                       |                  | 4.02-11            |         |         |         |          |                    |         |         |         | 3.84-14            |         |         |         |            |
| $h_{9/2}$                              |                  | 1.47–11            |         |         |         |          |                    |         |         |         | 8.90–15            |         |         |         |            |
| $h_{11/2}$                             |                  | 1.74–11            |         |         |         |          |                    |         |         |         | 1.05–14            |         |         |         |            |
| s <sub>1/2</sub>                       |                  | 7.45–12            |         |         |         |          |                    |         |         |         | 3.53–14            |         |         |         |            |
| $p_{1/2}$                              |                  | 8.43-12            |         |         |         |          |                    |         |         |         | 3.56-14            |         |         |         |            |
| $p_{3/2}$                              |                  | 1.88–11            |         |         |         |          |                    |         |         |         | 6.73–14            |         |         |         |            |
| $d_{3/2}$                              |                  | 1.99–11            |         |         |         |          |                    |         |         |         | 5.04-14            |         |         |         |            |
| d <sub>5/2</sub>                       |                  | 2.87-11            |         |         |         |          |                    |         |         |         | 6.98-14            |         |         |         |            |
| $f_{5/2}$                              |                  | 2.75-11            |         |         |         |          |                    |         |         |         | 4.29-14            |         |         |         |            |
| $f_{7/2}$                              | 6.39–11          |                    |         | 1.14–11 |         |          |                    |         |         |         | 5.51-14            |         |         |         |            |
| g <sub>7/2</sub>                       | 5.08-11          |                    |         | 9.02-12 |         |          |                    |         |         |         | 2.74–14            |         |         |         |            |
| g <sub>9/2</sub>                       |                  | 3.52-11            |         |         |         |          |                    |         |         |         | 3.35-14            |         |         |         |            |
| $h_{9/2}$                              |                  | 2.02-11            |         |         |         |          |                    |         |         |         | 1.22-14            |         |         |         |            |
| $h_{11/2}$                             |                  | 2.40-11            |         |         |         |          |                    |         |         |         | 1.45-14            |         |         |         |            |
| i <sub>11/2</sub>                      |                  | 7.43-12            |         |         |         |          |                    |         |         |         | 2.95-15            |         |         |         | 5.77-1     |
| i <sub>13/2</sub>                      |                  | 8.59-12            |         |         |         |          |                    |         |         |         | 3.41-15            |         |         |         | 6.65-1     |
| <i>s</i> <sub>1/2</sub>                |                  | 5.24-12            |         |         |         |          |                    |         |         |         | 2.40-14            |         |         |         | 1.15-1     |
| p <sub>1/2</sub>                       |                  | 5.85-12            |         |         |         |          |                    |         |         |         | 2.41-14            |         |         |         |            |
| p <sub>3/2</sub>                       |                  | 1.33-11            |         |         |         |          |                    |         |         |         | 4.61-14            |         |         |         | 5.58-1     |
| d <sub>3/2</sub>                       |                  | 1.41-11            |         |         |         |          |                    |         |         |         | 3.51–14<br>4.87–14 |         |         |         |            |
| d <sub>5/2</sub>                       |                  | 2.05–11<br>2.04–11 |         |         |         |          |                    |         |         |         | 4.87-14<br>3.14-14 |         |         |         |            |
| f <sub>5/2</sub>                       |                  |                    |         |         |         |          |                    |         |         |         |                    |         |         |         |            |
| $f_{7/2}$                              |                  | 2.67-11            |         |         |         |          |                    |         |         |         | 4.04-14            |         |         |         |            |
| g <sub>7/2</sub>                       |                  | 2.33-11            |         |         |         |          |                    |         |         |         | 2.22-14            |         |         |         |            |
| g <sub>9/2</sub>                       |                  | 2.88-11            |         |         |         |          |                    |         |         |         | 2.72–14<br>1.23–14 |         |         |         |            |
| h <sub>9/2</sub><br>h                  |                  | 2.03-11            |         |         |         |          | 1.04–12<br>1.24–12 |         |         |         |                    |         |         |         |            |
| $h_{11/2}$                             |                  |                    |         |         |         |          | 1.24-12<br>5.94-13 |         |         |         |                    |         |         |         |            |
| i <sub>11/2</sub><br>i <sub>13/2</sub> |                  |                    |         |         |         |          | 5.94-13<br>6.88-13 |         |         |         | 4.84-15<br>5.59-15 |         |         |         |            |
| s <sub>1/2</sub>                       |                  | 3.85-12            |         |         |         |          |                    |         |         |         | 1.71-14            |         |         |         |            |
| $p_{1/2}$                              |                  | 4.25-12            |         |         |         |          |                    |         |         |         | 1.71–14            |         |         |         |            |
| $p_{3/2}$                              |                  | 9.82-12            |         |         |         |          |                    |         |         |         | 3.30-14            |         |         |         |            |
| P3/2<br>d <sub>3/2</sub>               |                  | 1.04-11            |         |         |         |          |                    |         |         |         | 2.54-14            |         |         |         |            |
| d <sub>5/2</sub>                       |                  | 1.52-11            |         |         |         |          |                    |         |         |         | 3.53-14            |         |         |         |            |
| f <sub>5/2</sub>                       |                  | 1.54-11            |         |         |         |          |                    |         |         |         | 2.34-14            |         |         |         |            |
| f <sub>7/2</sub>                       |                  | 2.02-11            |         |         |         |          |                    |         |         |         | 3.02-14            |         |         |         |            |
| g <sub>7/2</sub>                       |                  | 1.87-11            |         |         |         |          |                    |         |         |         | 1.77-14            |         |         |         |            |
| 57/2<br>g <sub>9/2</sub>               |                  | 2.31-11            |         |         |         |          |                    |         |         |         | 2.17-14            |         |         |         |            |
| $h_{9/2}$                              |                  | 1.84-11            |         |         |         |          |                    |         |         |         | 1.11-14            |         |         |         |            |
| $h_{11/2}^{h_{11/2}}$                  |                  | 2.19-11            |         |         |         |          |                    |         |         |         | 1.31–14            |         |         |         |            |
| $i_{11/2}$<br>$i_{11/2}$               |                  | 1.39-11            |         |         |         |          |                    |         |         |         | 5.51-15            |         |         |         |            |
| i <sub>13/2</sub>                      |                  | 1.61-11            |         |         |         |          |                    |         |         |         | 6.37-15            |         |         |         |            |
| $0s_{1/2}$                             |                  | 2.92-12            |         |         |         |          |                    |         |         |         | 1.25-14            |         |         |         |            |
| $0p_{1/2}$                             |                  | 3.20-12            |         |         |         |          |                    |         |         |         | 1.26-14            |         |         |         |            |
| $0p_{1/2}$<br>$0p_{3/2}$               |                  |                    |         |         |         |          | 4.16-13            |         |         |         | 2.44-14            |         |         |         |            |
| /-                                     |                  |                    |         |         |         |          | 4.40-13            |         |         |         | 1.89-14            |         |         |         |            |
|                                        | 1,71-11          | 1.50-12            | 1.10-12 |         |         |          |                    |         |         |         |                    |         |         |         |            |
| $0d_{3/2}$<br>$0d_{5/2}$               |                  | 1.16–11            | 6 52-12 | 3 67-12 | 2.06-12 | 1 1 5_12 | 639-13             | 3 44-13 | 173-13  | 754-14  | 2 63-14            | 695-15  | 133-15  | 1.65–16 | $116_{-1}$ |

| Table 1 | (continued) |
|---------|-------------|
|---------|-------------|

| Shell _                                | $\log_{10} T(K)$ |         |         |                    |         |         |         |                    |         |         |                    |         |         |             |       |
|----------------------------------------|------------------|---------|---------|--------------------|---------|---------|---------|--------------------|---------|---------|--------------------|---------|---------|-------------|-------|
|                                        | 3.0              | 3.5     | 4.0     | 4.5                | 5.0     | 5.5     | 6.0     | 6.5                | 7.0     | 7.5     | 8.0                | 8.5     | 9.0     | 9.5         | 10.0  |
| $10f_{7/2}$                            | 2.79-11          | 1.57-11 | 8.83-12 | 4.96-12            | 2.78-12 | 1.55-12 | 8.52-13 | 4.46-13            | 2.08-13 | 7.93-14 | 2.30-14            | 5.08-15 | 8.47-16 | 9.65-17     | 6.60- |
| $10g_{7/2}$                            | 2.67-11          | 1.50-11 | 8.46-12 | 4.76-12            | 2.66-12 | 1.48-12 | 7.98-13 | 4.00-13            | 1.70-13 | 5.63-14 | 1.41-14            | 2.78-15 | 4.36-16 | 4.83-17     | 3.27- |
| $10g_{9/2}$                            | 3.31-11          | 1.86-11 | 1.05-11 | 5.89-12            | 3.30-12 | 1.83-12 | 9.87-13 | 4.94-13            | 2.10-13 | 6.92-14 | 1.73-14            | 3.41-15 | 5.34-16 | 5.91-17     | 3.99- |
| $10h_{9/2}$                            | 2.83-11          | 1.59-11 | 8.96-12 | 5.03-12            | 2.81-12 | 1.55-12 | 8.15-13 | 3.85-13            | 1.47-13 | 4.26-14 | 9.53-15            | 1.76-15 | 2.68-16 | 2.93-17     | 1.97- |
| $10h_{11/2}$                           |                  |         |         | 6.00-12            |         |         |         | 4.58-13            | 1.75–13 | 5.05-14 | 1.13-14            | 2.09-15 | 3.17-16 | 3.47-17     | 2.34- |
| 10i <sub>11/2</sub>                    |                  |         |         | 4.35-12            |         |         |         |                    |         |         | 5.45-15            |         |         |             |       |
| 10i <sub>13/2</sub>                    |                  |         |         | 5.04-12            |         |         |         |                    |         |         | 6.31-15            |         |         |             |       |
| $11s_{1/2}$                            |                  |         |         | 7.24-13            |         |         |         |                    |         |         | 9.48-15            |         |         |             |       |
| $11p_{1/2}$                            |                  |         |         | 7.86-13            |         |         |         |                    |         |         | 9.50-15            |         |         |             |       |
| $11p_{3/2}$                            |                  |         |         | 1.86-12            |         |         |         |                    |         |         | 1.85-14            |         |         |             |       |
| $11d_{3/2}$                            |                  |         |         | 1.97-12            |         |         |         |                    |         |         | 1.44-14            |         |         |             |       |
| $11d_{5/2}$                            |                  |         |         | 2.87-12            |         |         |         |                    |         |         | 2.01-14            |         |         |             |       |
| $11f_{5/2}$                            |                  |         |         | 2.98-12            |         |         |         |                    |         |         | 1.39-14            |         |         |             |       |
| $11f_{7/2}$                            |                  |         |         | 3.92-12            |         |         |         |                    |         |         | 1.79–14            |         |         |             |       |
| $11g_{7/2}$                            |                  |         |         | 3.85-12            |         |         |         |                    |         |         | 1.13–14            |         |         |             |       |
| $11g_{9/2}$                            |                  |         |         | 4.78-12            |         |         |         |                    |         |         | 1.39-14            |         |         |             |       |
| /                                      |                  |         |         | 4.29-12            |         |         |         |                    |         |         | 8.07-15            |         |         |             |       |
| $11h_{9/2}$                            |                  |         |         | 4.29-12<br>5.11-12 |         |         |         |                    |         |         | 9.57-15            |         |         |             |       |
| $11h_{11/2}$                           |                  |         |         |                    |         |         |         |                    |         |         |                    |         |         |             |       |
| $11i_{11/2}$                           |                  |         |         | 4.05-12            |         |         |         |                    |         |         | 5.06-15            |         |         |             |       |
| $11i_{13/2}$                           |                  |         |         | 4.70–12<br>5.78–13 |         |         |         |                    |         |         | 5.85–15<br>7.34–15 |         |         |             |       |
| $12s_{1/2}$                            |                  |         |         | 6.24–13            |         |         |         |                    |         |         | 7.34-15            |         |         |             |       |
| $12p_{1/2}$                            |                  |         |         |                    |         |         |         |                    |         |         |                    |         |         |             |       |
| $12p_{3/2}$                            |                  |         |         | 1.49-12            |         |         |         |                    |         |         | 1.44-14            |         |         |             |       |
| $12d_{3/2}$                            |                  |         |         | 1.58-12            |         |         |         |                    |         |         | 1.13-14            |         |         |             |       |
| $12d_{5/2}$                            |                  |         |         | 2.30-12            |         |         |         |                    |         |         | 1.57-14            |         |         |             |       |
| $12f_{5/2}$                            |                  |         |         | 2.39-12            |         |         |         |                    |         |         | 1.10-14            |         |         |             |       |
| $12f_{7/2}$                            |                  |         |         | 3.16-12            |         |         |         |                    |         |         | 1.42–14            |         |         |             |       |
| $12g_{7/2}$                            |                  |         |         | 3.15-12            |         |         |         |                    |         |         | 9.13-15            |         |         |             |       |
| $12g_{9/2}$                            |                  |         |         | 3.91–12            |         |         |         |                    |         |         | 1.12–14            |         |         |             |       |
| $12h_{9/2}$                            |                  |         |         | 3.64-12            |         |         |         |                    |         |         | 6.80-15            |         |         |             |       |
| $12h_{11/2}$                           | 2.44-11          | 1.37–11 | 7.73–12 | 4.34-12            | 2.42-12 | 1.33–12 | 7.01–13 | 3.30–13            | 1.26–13 | 3.62-14 | 8.06-15            | 1.49–15 | 2.26-16 | 2.48-17     | 1.67- |
| $12i_{11/2}$                           | 2.05-11          | 1.16–11 | 6.50-12 | 3.65-12            | 2.03-12 | 1.10-12 | 5.64-13 | 2.48-13            | 8.50-14 | 2.19-14 | 4.54–15            | 8.07-16 | 1.21–16 | 1.32–17     | 8.85- |
| $12i_{13/2}$                           | 2.39-11          | 1.34–11 | 7.55–12 | 4.24-12            | 2.36-12 | 1.28-12 | 6.55-13 | 2.88-13            | 9.86-14 | 2.54-14 | 5.26-15            | 9.34-16 | 1.40-16 | 1.52–17     | 1.02- |
| total<br>W <sup>74+</sup>              | 1.01–08          | 5.66–09 | 3.18-09 | 1.79–09            | 1.00-09 | 5.55–10 | 3.01-10 | 1.57–10            | 7.75–11 | 3.58–11 | 1.52–11            | 5.70-12 | 1.72–12 | 3.59–13     | 4.97- |
| $1s_{1/2}$                             | 2.70-09          | 1.52-09 | 8.53-10 | 4.80-10            | 2.70-10 | 1.52-10 | 8.53-11 | 4.78-11            | 2.67-11 | 1.47-11 | 7.81-12            | 3.72-12 | 1.39-12 | 3.47-13     | 5.56- |
| $2s_{1/2}$                             | 4.20-10          | 2.36-10 | 1.33-10 | 7.47-11            | 4.20-11 | 2.36-11 | 1.33-11 | 7.46-12            | 4.18-12 | 2.32-12 | 1.24-12            | 5.91-13 | 2.17-13 | 5.17-14     | 7.80- |
| $2p_{1/2}$                             | 5.07-10          | 2.85-10 | 1.60-10 | 9.01-11            | 5.07-11 | 2.85-11 | 1.60-11 | 8.91-12            | 4.89-12 | 2.56-12 | 1.21-12            | 4.63-13 | 1.29-13 | 2.30-14     | 2.50- |
| $2p_{3/2}$                             |                  |         |         | 1.43-10            |         |         |         |                    |         |         | 1.79-12            |         |         |             |       |
| $3_{1/2}$                              |                  |         |         | 2.43-11            |         |         |         |                    |         |         | 4.04-13            |         |         |             |       |
| $3p_{1/2}$                             |                  |         |         | 2.96-11            |         |         |         | 2.93-12            |         |         |                    |         |         |             |       |
| $3p_{3/2}$                             |                  |         |         |                    |         |         |         | 5.35-12            |         |         |                    |         |         |             |       |
| 3/2<br>$3d_{3/2}$                      |                  |         |         |                    |         |         |         | 3.91-12            |         |         |                    |         |         |             |       |
| $3d_{5/2}$                             |                  |         |         |                    |         |         |         | 5.36-12            |         |         |                    |         |         |             |       |
| '                                      |                  |         |         |                    |         |         |         | 1.10-12            |         |         |                    |         |         |             |       |
| 4s <sub>1/2</sub><br>4p <sub>1/2</sub> |                  |         |         |                    |         |         |         | 1.30-12            |         |         |                    |         |         |             |       |
| '                                      |                  |         |         |                    |         |         |         | 2.57-12            |         |         |                    |         |         |             |       |
| 1p <sub>3/2</sub>                      |                  |         |         |                    |         |         |         | 2.37-12            |         |         |                    |         |         |             |       |
| 4d <sub>3/2</sub>                      |                  |         |         |                    |         |         |         | 2.36-12<br>3.31-12 |         |         |                    |         |         |             |       |
| $d_{5/2}$                              |                  |         |         |                    |         |         |         | 3.31-12<br>1.77-12 |         |         |                    |         |         |             |       |
| 4f <sub>5/2</sub>                      |                  |         |         |                    |         |         |         |                    |         |         |                    |         |         |             |       |
| 4f <sub>7/2</sub>                      |                  |         |         |                    |         |         |         | 2.26-12            |         |         |                    |         |         |             |       |
| S <sub>1/2</sub>                       |                  |         |         |                    |         |         |         | 6.00-13            |         |         |                    |         |         |             |       |
| $p_{1/2}$                              |                  |         |         |                    |         |         |         | 6.94-13            |         |         |                    |         |         |             |       |
| $p_{3/2}$                              |                  |         |         |                    |         |         |         | 1.44-12            |         |         |                    |         |         |             |       |
| $5d_{3/2}$                             |                  |         |         |                    |         |         |         | 1.43-12            |         |         |                    |         |         |             |       |
| $5d_{5/2}$                             |                  |         |         |                    |         |         |         | 2.02-12            |         |         |                    |         |         |             |       |
| $5f_{5/2}$                             |                  |         |         |                    |         |         |         | 1.52–12            |         |         |                    |         |         |             |       |
| $5f_{7/2}$                             |                  |         |         | 2.15-11            |         |         |         | 1.96–12            |         |         |                    |         |         |             |       |
| 5g <sub>7/2</sub>                      | 5.36-11          | 3.02-11 | 1.70–11 | 9.53-12            | 5.34-12 | 2.96-12 | 1.60-12 | 8.09-13            | 3.49-13 | 1.17–13 | 2.97-14            | 5.92-15 | 9.32-16 | 1.03–16     | 6.99- |
| 5g <sub>9/2</sub>                      | 6.56-11          | 3.69-11 | 2.07-11 | 1.17–11            | 6.53-12 | 3.63-12 | 1.96-12 | 9.88-13            | 4.26-13 | 1.43-13 | 3.61-14            | 7.18–15 | 1.13–15 | 1.25–16     | 8.46- |
| $5s_{1/2}$                             | 2.07-11          | 1.16-11 | 6.55-12 | 3.68-12            | 2.07-12 | 1.16-12 | 6.55-13 | 3.68-13            | 2.05-13 | 1.11-13 | 5.69-14            | 2.54-14 | 8.71-15 | 1.97-15     | 2.83- |
| $5p_{1/2}$                             | 2.35-11          | 1.32-11 | 7.44-12 | 4.19-12            | 2.35-12 | 1.32-12 | 7.44–13 | 4.17-13            | 2.31-13 | 1.22-13 | 5.73-14            | 2.17-14 | 5.95-15 | 1.04-15     | 1.11- |
| $5p_{3/2}$                             | 5.12-11          | 2.88-11 | 1.62-11 | 9.10-12            | 5.12-12 | 2.87-12 | 1.61-12 | 8.94-13            | 4.84-13 | 2.44-13 | 1.07-13            | 3.70-14 | 9.22-15 | 1.45-15     | 1.35- |
| $5d_{3/2}$                             | 5.36-11          | 3.01-11 | 1.69-11 | 9.53-12            | 5.35-12 | 3.00-12 | 1.67-12 | 9.14-13            | 4.73-13 | 2.16-13 | 7.89–14            | 2.17-14 | 4.27-15 | 5.42-16     | 4.01- |
| $5d_{5/2}$                             |                  |         |         |                    |         |         |         | 1.31-12            |         |         |                    |         |         |             |       |
|                                        |                  |         |         |                    |         |         |         |                    |         |         |                    |         |         | tinued on r |       |

| Table 1 ( | continued) |
|-----------|------------|
|-----------|------------|

| Shell                                    | $\log_{10} T(K$    | <b>(</b> )         |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                          | 3.0                | 3.5                | 4.0                | 4.5                | 5.0                | 5.5                | 6.0                | 6.5                | 7.0                | 7.5                | 8.0                | 8.5                | 9.0                | 9.5                | 10.0               |
| $6f_{5/2}$                               | 6.91-11            | 3.89-11            | 2.19-11            | 1.23-11            | 6.89-12            | 3.85-12            | 2.12-12            | 1.12-12            | 5.35-13            | 2.09-13            | 6.24-14            | 1.40-14            | 2.37-15            | 2.71-16            | 1.86–17            |
| $6f_{7/2}$                               | 8.98-11            | 5.05-11            | 2.84-11            | 1.60-11            |                    |                    | 2.76-12            | 1.46-12            | 6.92-13            | 2.69-13            | 7.98–14            | 1.78–14            | 3.00-15            | 3.43-16            | 2.35-17            |
| 6g <sub>7/2</sub>                        | 5.99-11            | 3.37-11            | 1.89–11            | 1.06-11            | 5.96-12            |                    | 1.79–12            | 9.03-13            | 3.90-13            | 1.31–13            | 3.32-14            | 6.60-15            | 1.04–15            | 1.15–16            | 7.79–18            |
| 6g <sub>9/2</sub>                        | 7.35–11            | 4.14-11            |                    |                    | 7.32-12            |                    |                    |                    | 4.77-13            | 1.60-13            |                    | 8.03-15            |                    | 1.40-16            | 9.46-18            |
| $6h_{9/2}$                               | 2.68-11            | 1.51-11            |                    |                    | 2.66-12            |                    |                    | 3.68-13            | 1.42-13            | 4.16-14            |                    | 1.74-15            |                    | 2.90-17            | 1.95-18            |
| $6h_{11/2}$                              | 3.18-11            | 1.79-11            | 1.01-11            |                    | 3.15-12            |                    |                    | 4.35-13            | 1.68-13            | 4.91-14            |                    | 2.05-15            |                    | 3.42-17            | 2.30-18            |
| $7s_{1/2}$                               | 1.38–11<br>1.54–11 | 7.74–12<br>8.64–12 | 4.35-12            |                    | 1.38–12<br>1.54–12 |                    | 4.35–13<br>4.85–13 | 2.43–13<br>2.72–13 | 1.35–13<br>1.50–13 | 7.25–14<br>7.88–14 |                    | 1.61–14<br>1.38–14 | 5.50–15<br>3.77–15 | 1.24–15<br>6.56–16 | 7.02–17            |
| 7p <sub>1/2</sub><br>7p <sub>3/2</sub>   |                    |                    | 4.80-12            |                    | 3.43-12            |                    | 4.85-15            | 5.97-13            | 3.21-13            | 1.60-13            | 6.95–14            | 2.39-14            | 5.91-15            | 9.26-16            | 8.63-17            |
| $7p_{3/2}$<br>$7d_{3/2}$                 | 3.63-11            | 2.04-11            | 1.15-11            |                    | 3.63-12            | 2.04-12            | 1.13-12            | 6.19–13            | 3.19–13            | 1.45-13            | 5.25-14            | 1.44-14            | 2.83-15            | 3.58-16            | 2.65-17            |
| $7d_{5/2}$                               | 5.24-11            |                    |                    |                    | 5.24-12            |                    |                    | 8.88-13            |                    | 2.03-13            |                    | 1.95-14            |                    |                    | 3.44-17            |
| $7f_{5/2}$                               | 5.03-11            | 2.83-11            | 1.59-11            |                    | 5.03-12            |                    |                    | 8.16-13            | 3.88-13            | 1.51-13            |                    | 1.01-14            |                    | 1.95-16            | 1.34–17            |
| $7f_{7/2}$                               | 6.57-11            | 3.70-11            | 2.08-11            | 1.17-11            | 6.56-12            | 3.66-12            | 2.02-12            | 1.06-12            | 5.04-13            | 1.95-13            | 5.77-14            | 1.29-14            | 2.16-15            | 2.47-16            | 1.69-17            |
| 7g <sub>7/2</sub>                        | 5.22-11            | 2.94-11            | 1.65–11            | 9.28-12            | 5.20-12            | 2.89-12            | 1.56-12            | 7.88-13            | 3.39-13            | 1.14–13            | 2.88-14            | 5.73-15            | 9.01-16            | 9.99-17            | 6.75-18            |
| $7g_{9/2}$                               | 6.43-11            | 3.62-11            | 2.03-11            | 1.14–11            | 6.40-12            | 3.56-12            | 1.92-12            | 9.69-13            | 4.17-13            | 1.39–13            | 3.52-14            | 6.98-15            | 1.10-15            | 1.22-16            | 8.21-18            |
| $7h_{9/2}$                               | 3.70-11            | 2.08-11            | 1.17–11            |                    | 3.67-12            |                    | 1.07-12            |                    | 1.96–13            | 5.73-14            | 1.29–14            | 2.39–15            | 3.65-16            | 3.99–17            | 2.69-18            |
| $7h_{11/2}$                              | 4.39-11            | 2.47-11            | 1.39-11            | 7.79–12            | 4.35-12            | 2.40-12            | 1.27-12            | 6.01-13            | 2.32-13            | 6.77-14            | 1.52-14            | 2.82-15            | 4.30-16            | 4.71-17            | 3.17-18            |
| $7i_{11/2}$                              | 1.36-11            | 7.64-12            | 4.30-12            |                    | 1.34-12            | 7.30-13            | 3.74-13            | 1.66-13            | 5.75-14            | 1.50-14            | 3.12-15            | 5.56-16            | 8.33-17            | 9.07-18            | 6.10-19            |
| 7i <sub>13/2</sub><br>8s <sub>1/2</sub>  | 1.57–11<br>9.68–12 | 8.83–12<br>5.44–12 | 4.96–12<br>3.06–12 | 2.79–12<br>1.72–12 | 1.55–12<br>9.69–13 | 8.44–13<br>5.45–13 | 4.32–13<br>3.06–13 | 1.92–13<br>1.71–13 | 6.64–14<br>9.38–14 | 1.73–14<br>4.99–14 | 3.59–15<br>2.48–14 | 6.40–16<br>1.09–14 | 9.60–17<br>3.69–15 | 1.05–17<br>8.25–16 | 7.03–19<br>1.18–16 |
| $8p_{1/2}$                               | 9.08-12<br>1.07-11 | 5.44-12<br>5.99-12 |                    | 1.90-12            | 9.09-13<br>1.07-12 | 5.45-15<br>6.00-13 | 3.37-13            | 1.71-13            | 9.38-14<br>1.03-13 | 4.99-14<br>5.39-14 | 2.48-14<br>2.49-14 | 9.30–15            | 2.53-15            | 8.25-16<br>4.40-16 | 4.70–17            |
| 8p <sub>3/2</sub>                        | 2.43-11            | 1.37-11            | 7.69–12            | 4.32-12            | 2.43-12            | 1.36-12            | 7.62-13            | 4.21-13            | 2.24-13            | 1.11-13            | 4.76-14            | 1.63-14            | 4.01-15            | 6.26-16            | 5.82-17            |
| 8d <sub>3/2</sub>                        | 2.58-11            | 1.45-11            | 8.17-12            |                    | 2.58-12            |                    | 8.06-13            | 4.39-13            | 2.25-13            | 1.01-13            | 3.66-14            | 9.98-15            | 1.96-15            | 2.48-16            | 1.86-17            |
| 8d <sub>5/2</sub>                        | 3.74–11            | 2.10-11            | 1.18–11            | 6.65-12            |                    | 2.09-12            | 1.16-12            | 6.32-13            | 3.22-13            | 1.43-13            | 5.08-14            | 1.36-14            | 2.61-15            | 3.25-16            | 2.37-17            |
| 8f <sub>5/2</sub>                        | 3.73-11            | 2.10-11            | 1.18–11            | 6.63-12            | 3.72-12            | 2.08-12            | 1.14-12            | 6.03-13            | 2.86-13            | 1.11–13            | 3.29-14            | 7.37–15            | 1.24–15            | 1.42–16            | 9.73-18            |
| 8f <sub>7/2</sub>                        | 4.88-11            | 2.74-11            | 1.54–11            |                    | 4.87-12            |                    | 1.50-12            | 7.87-13            | 3.72-13            | 1.44–13            | 4.23-14            | 9.41-15            | 1.58–15            | 1.80–16            | 1.23–17            |
| 8g <sub>7/2</sub>                        | 4.26-11            | 2.40-11            | 1.35–11            |                    | 4.24–12            | 2.36-12            | 1.27–12            | 6.42-13            | 2.76-13            | 9.24–14            | 2.33–14            | 4.64–15            | 7.29–16            | 8.08-17            | 5.47-18            |
| 8g <sub>9/2</sub>                        | 5.26-11            | 2.96-11            | 1.66-11            |                    | 5.24-12            |                    |                    | 7.91-13            | 3.40-13            | 1.13-13            | 2.86-14            | 5.66-15            | 8.89-16            | 9.85-17            | 6.66-18            |
| 8h <sub>9/2</sub>                        | 3.72-11            | 2.09-11            | 1.18-11            |                    | 3.69-12            |                    | 1.07-12            | 5.10-13            | 1.97-13            | 5.74-14            | 1.29-14            | 2.40-15            | 3.65-16            | 4.00-17            | 2.69-18            |
| 8h <sub>11/2</sub>                       | 4.42–11<br>2.23–11 | 2.49–11<br>1.25–11 | 1.40–11<br>7.04–12 |                    | 4.38–12<br>2.20–12 | 2.41–12<br>1.20–12 | 1.27–12<br>6.14–13 | 6.05–13<br>2.72–13 | 2.33–13<br>9.43–14 | 6.80–14<br>2.46–14 | 1.53–14<br>5.11–15 | 2.84–15<br>9.11–16 | 4.32–16<br>1.37–16 | 4.73–17<br>1.49–17 | 3.18–18<br>1.00–18 |
| 8i <sub>11/2</sub><br>8i <sub>13/2</sub> | 2.23-11            | 1.45-11            | 8.15-12            |                    | 2.20-12            | 1.39–12            | 7.10–13            | 3.15-13            | 1.09-13            | 2.84-14            | 5.90-15            | 1.05-15            | 1.58-16            | 1.72-17            | 1.15–18            |
| $9s_{1/2}$                               | 7.12-12            | 4.00-12            |                    | 1.27-12            |                    | 4.00-13            | 2.24-13            | 1.25-13            | 6.80-14            | 3.58-14            | 1.77-14            | 7.66–15            | 2.59-15            | 5.78-16            | 8.26-17            |
| 9p <sub>1/2</sub>                        | 7.74–12            | 4.35-12            | 2.45-12            | 1.38-12            | 7.75–13            | 4.36-13            | 2.44-13            | 1.36-13            | 7.44–14            | 3.85-14            | 1.77–14            | 6.57-15            | 1.78-15            | 3.09-16            | 3.29-17            |
| 9p <sub>3/2</sub>                        | 1.79–11            | 1.01-11            | 5.68-12            | 3.19-12            | 1.80-12            | 1.01-12            | 5.62-13            | 3.09-13            | 1.63–13            | 8.01-14            | 3.41-14            | 1.16-14            | 2.84-15            | 4.43-16            | 4.12-17            |
| 9d <sub>3/2</sub>                        | 1.91–11            | 1.07-11            | 6.04-12            | 3.40-12            | 1.91–12            | 1.07-12            | 5.94-13            | 3.23-13            | 1.65–13            | 7.36–14            | 2.64-14            | 7.19–15            | 1.41-15            | 1.78–16            | 1.30–17            |
| $9d_{5/2}$                               | 2.77-11            | 1.56–11            | 8.76-12            |                    | 2.77-12            | 1.55–12            | 8.61-13            | 4.66-13            | 2.36-13            | 1.04–13            | 3.68-14            | 9.78-15            | 1.88-15            | 2.33–16            | 1.69–17            |
| $9f_{5/2}$                               | 2.82-11            | 1.59-11            | 8.92-12            | 5.02-12            |                    | 1.57-12            | 8.64-13            | 4.55-13            | 2.15-13            | 8.32-14            | 2.46-14            | 5.49-15            | 9.23-16            | 1.06-16            | 7.24-18            |
| 9f <sub>7/2</sub>                        | 3.70-11            | 2.08-11            | 1.17-11            |                    | 3.69-12            |                    | 1.13-12            | 5.95-13            | 2.80-13            | 1.08-13            | 3.16-14            | 7.02-15            | 1.18-15            | 1.34-16            | 9.18-18            |
| 9g <sub>7/2</sub>                        | 3.42–11<br>4.23–11 | 1.92–11<br>2.38–11 | 1.08–11<br>1.34–11 |                    | 3.41–12<br>4.21–12 |                    | 1.02–12<br>1.26–12 | 5.15–13<br>6.35–13 | 2.21–13<br>2.72–13 | 7.37–14<br>9.05–14 | 1.86–14<br>2.28–14 | 3.69–15<br>4.51–15 | 5.80–16<br>7.08–16 | 6.43–17<br>7.84–17 | 4.35–18<br>5.30–18 |
| 9g <sub>9/2</sub><br>9h <sub>9/2</sub>   | 4.25-11<br>3.36-11 | 2.38-11<br>1.89-11 | 1.06-11            |                    | 4.21-12<br>3.34-12 |                    | 9.70–12            | 4.60-13            | 1.78–13            | 5.18-14            | 2.28-14<br>1.17-14 | 2.16-15            | 3.29-16            | 3.60-17            | 2.42-18            |
| $9h_{11/2}$                              | 4.00-11            | 2.25-11            |                    |                    | 3.97-12            |                    | 1.15-12            | 5.47-13            | 2.11-13            |                    | 1.38–14            |                    | 3.89-16            | 4.26-17            |                    |
| 9i <sub>11/2</sub>                       |                    |                    |                    |                    | 2.51-12            |                    |                    |                    |                    | 2.79-14            |                    |                    |                    | 1.69-17            |                    |
| 9i <sub>13/2</sub>                       |                    |                    |                    |                    |                    |                    |                    | 3.59-13            |                    |                    |                    |                    |                    | 1.95–17            | 1.31-18            |
| 10s <sub>1/2</sub>                       |                    |                    |                    |                    |                    |                    | 1.70–13            |                    |                    | 2.66-14            |                    |                    |                    |                    |                    |
| $10p_{1/2}$                              |                    |                    |                    |                    |                    |                    | 1.84-13            |                    |                    | 2.84-14            |                    |                    |                    |                    |                    |
| 10p <sub>3/2</sub>                       |                    |                    |                    |                    | 1.37-12            |                    |                    |                    |                    | 5.97-14            |                    |                    |                    |                    |                    |
| 10d <sub>3/2</sub>                       |                    |                    |                    |                    | 1.45-12            |                    |                    |                    |                    | 5.51-14            |                    |                    |                    |                    |                    |
| 10d <sub>5/2</sub>                       |                    |                    |                    |                    | 2.12–12<br>2.18–12 |                    |                    |                    |                    | 7.81–14<br>6.36–14 |                    |                    |                    |                    |                    |
| $10f_{5/2}$<br>$10f_{7/2}$               |                    |                    |                    |                    | 2.18-12            |                    |                    |                    |                    | 8.25–14            |                    |                    |                    |                    |                    |
| $10_{7/2}$<br>$10g_{7/2}$                |                    |                    |                    |                    | 2.80-12            |                    |                    |                    |                    | 5.88–14            |                    |                    |                    |                    |                    |
| $10g_{9/2}$                              |                    |                    |                    |                    | 3.39-12            |                    |                    |                    |                    | 7.23-14            |                    |                    |                    |                    |                    |
| 10/ <sub>9/2</sub>                       |                    |                    |                    |                    | 2.89-12            |                    |                    |                    |                    | 4.46-14            |                    |                    |                    |                    |                    |
| $10h_{11/2}$                             |                    |                    |                    |                    | 3.44-12            |                    |                    |                    |                    | 5.30-14            |                    |                    |                    |                    |                    |
| 10i <sub>11/2</sub>                      | 2.52-11            | 1.42–11            | 7.97–12            | 4.47-12            | 2.49-12            | 1.35–12            | 6.94-13            | 3.07-13            | 1.06-13            | 2.77-14            | 5.75-15            | 1.02-15            | 1.54–16            | 1.67–17            | 1.12–18            |
| 10i <sub>13/2</sub>                      |                    |                    |                    |                    | 2.89-12            |                    |                    |                    |                    | 3.20-14            |                    |                    |                    |                    |                    |
| 11 <i>s</i> <sub>1/2</sub>               |                    |                    |                    |                    | 4.24-13            |                    |                    |                    |                    | 2.03-14            |                    |                    |                    |                    |                    |
| $11p_{1/2}$                              |                    |                    |                    |                    | 4.53-13            |                    |                    |                    |                    | 2.16-14            |                    |                    |                    |                    |                    |
| $11p_{3/2}$                              |                    |                    |                    |                    | 1.07-12            |                    |                    |                    |                    | 4.56-14            |                    |                    |                    |                    |                    |
| 11d <sub>3/2</sub>                       |                    |                    |                    |                    | 1.14–12<br>1.66–12 |                    |                    |                    |                    | 4.23–14<br>6.01–14 |                    |                    |                    |                    |                    |
| $11d_{5/2}$<br>$11f_{5/2}$               |                    |                    |                    |                    | 1.66-12            |                    |                    |                    |                    | 6.01-14<br>4.95-14 |                    |                    |                    |                    |                    |
| $11f_{5/2}$<br>$11f_{7/2}$               |                    |                    |                    |                    |                    |                    |                    | 3.61-13            |                    |                    |                    |                    |                    |                    |                    |
| • •J 7/2                                 | 2.20 11            |                    | 12                 |                    | 2.20 12            |                    | 5.52 15            | 5.51 15            |                    | 5.15 14            |                    |                    | 5.51 10            |                    | 2 10               |

| Table 1 (d | continued) |
|------------|------------|
|------------|------------|

| Shell              | $\log_{10} T(K$ | ()      |         |         |         |         |         |         |         |         |         |         |         |         |         |
|--------------------|-----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                    | 3.0             | 3.5     | 4.0     | 4.5     | 5.0     | 5.5     | 6.0     | 6.5     | 7.0     | 7.5     | 8.0     | 8.5     | 9.0     | 9.5     | 10.0    |
| $11g_{7/2}$        | 2.23-11         | 1.25-11 | 7.05-12 | 3.96-12 | 2.22-12 | 1.23–12 | 6.65-13 | 3.33-13 | 1.42-13 | 4.72–14 | 1.19–14 | 2.35-15 | 3.69-16 | 4.09-17 | 2.77-18 |
| $11g_{9/2}$        | 2.76-11         | 1.55-11 | 8.73-12 | 4.91-12 | 2.75-12 | 1.53-12 | 8.23-13 | 4.12-13 | 1.76-13 | 5.81-14 | 1.46–14 | 2.88-15 | 4.52-16 | 5.00-17 | 3.38-18 |
| $11h_{9/2}$        | 2.48-11         | 1.39–11 | 7.85-12 | 4.41-12 | 2.46-12 | 1.36-12 | 7.15–13 | 3.39–13 | 1.30–13 | 3.78-14 | 8.50-15 | 1.57–15 | 2.40-16 | 2.62-17 | 1.77–18 |
| $11h_{11/2}$       | 2.96-11         | 1.66–11 | 9.36-12 | 5.26-12 | 2.94-12 | 1.62-12 | 8.52-13 | 4.03-13 | 1.55–13 | 4.49-14 | 1.01-14 | 1.86–15 | 2.84-16 | 3.11-17 | 2.09-18 |
| $11i_{11/2}$       | 2.34-11         | 1.32-11 | 7.42-12 | 4.16-12 | 2.32-12 | 1.26-12 | 6.46-13 | 2.86-13 | 9.88-14 | 2.57-14 | 5.33-15 | 9.50-16 | 1.42-16 | 1.55–17 | 1.04-18 |
| $11i_{13/2}$       | 2.72-11         | 1.53–11 | 8.61-12 | 4.83-12 | 2.69-12 | 1.46-12 | 7.49–13 | 3.31–13 | 1.14–13 | 2.97-14 | 6.17-15 | 1.10–15 | 1.65–16 | 1.79–17 | 1.21-18 |
| $12s_{1/2}$        | 3.38-12         | 1.90-12 | 1.07-12 | 6.02-13 | 3.38-13 | 1.90-13 | 1.06-13 | 5.79-14 | 3.09-14 | 1.58-14 | 7.60-15 | 3.25-15 | 1.09-15 | 2.42-16 | 3.45-17 |
| $12p_{1/2}$        | 3.58-12         | 2.02-12 | 1.14-12 | 6.39–13 | 3.59-13 | 2.01-13 | 1.12–13 | 6.20-14 | 3.32-14 | 1.68–14 | 7.58–15 | 2.79-15 | 7.53–16 | 1.30–16 | 1.38–17 |
| $12p_{3/2}$        | 8.58-12         | 4.83-12 | 2.72-12 | 1.53-12 | 8.59-13 | 4.81-13 | 2.66-13 | 1.44-13 | 7.47-14 | 3.57-14 | 1.49–14 | 4.98-15 | 1.22-15 | 1.89–16 | 1.73–17 |
| $12d_{3/2}$        | 9.07-12         | 5.11-12 | 2.87-12 | 1.62-12 | 9.08-13 | 5.08-13 | 2.81-13 | 1.51-13 | 7.55-14 | 3.31-14 | 1.17–14 | 3.16-15 | 6.17-16 | 7.80-17 | 5.73-18 |
| $12d_{5/2}$        | 1.32-11         | 7.45-12 | 4.19-12 | 2.36-12 | 1.33-12 | 7.41-13 | 4.09-13 | 2.19-13 | 1.09-13 | 4.71-14 | 1.64–14 | 4.33-15 | 8.27-16 | 1.03-16 | 7.48-18 |
| $12f_{5/2}$        | 1.38-11         | 7.77-12 | 4.37-12 | 2.46-12 | 1.38-12 | 7.70-13 | 4.22-13 | 2.20-13 | 1.03-13 | 3.92-14 | 1.15–14 | 2.55-15 | 4.28-16 | 4.89-17 | 3.34–18 |
| $12f_{7/2}$        | 1.82-11         | 1.02-11 | 5.77-12 | 3.24-12 | 1.82-12 | 1.01-12 | 5.55-13 | 2.89-13 | 1.34-13 | 5.10-14 | 1.48-14 | 3.28-15 | 5.48-16 | 6.24-17 | 4.27-18 |
| $12g_{7/2}$        | 1.82-11         | 1.02-11 | 5.76-12 | 3.24-12 | 1.81-12 | 1.01-12 | 5.43-13 | 2.71-13 | 1.16-13 | 3.82-14 | 9.60-15 | 1.90-15 | 2.98-16 | 3.31-17 | 2.23-18 |
| $12g_{9/2}$        | 2.26-11         | 1.27-11 | 7.15-12 | 4.02-12 | 2.25-12 | 1.25-12 | 6.73-13 | 3.36-13 | 1.43-13 | 4.71-14 | 1.18-14 | 2.33-15 | 3.65-16 | 4.04-17 | 2.73-18 |
| 12h <sub>9/2</sub> | 2.10-11         | 1.18-11 | 6.65-12 | 3.74-12 | 2.09-12 | 1.15-12 | 6.06-13 | 2.86-13 | 1.10-13 | 3.19-14 | 7.16-15 | 1.32-15 | 2.02-16 | 2.21-17 | 1.49-18 |
| $12h_{11/2}$       | 2.51-11         | 1.41-11 | 7.94-12 | 4.46-12 | 2.49-12 | 1.37-12 | 7.23-13 | 3.41-13 | 1.31-13 | 3.79-14 | 8.49-15 | 1.57-15 | 2.39-16 | 2.62-17 | 1.76-18 |
| $12i_{11/2}$       | 2.11-11         | 1.19-11 | 6.68-12 | 3.75-12 | 2.09-12 | 1.14-12 | 5.82-13 | 2.57-13 | 8.88-14 | 2.30-14 | 4.79-15 | 8.53-16 | 1.28-16 | 1.39-17 | 9.36-19 |
| $12i_{13/2}$       | 2.45-11         | 1.38-11 | 7.77-12 | 4.36-12 | 2.43-12 | 1.32-12 | 6.75-13 | 2.99-13 | 1.03-13 | 2.67-14 | 5.54-15 | 9.87-16 | 1.48-16 | 1.61-17 | 1.08-18 |
| total              | 1.17–08         | 6.56-09 | 3.69-09 | 2.07-09 | 1.16–09 | 6.45-10 | 3.51–10 | 1.85–10 | 9.30-11 | 4.41-11 | 1.95–11 | 7.71–12 | 2.46-12 | 5.42-13 | 7.86–14 |