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Linear instability of magnetic Taylor-Couette flow with Hall effect
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The influence of the Hall effect on the linear marginal stability of a molecular hydrodynamic Taylor-Couette
flow in the presence of an axial uniform magnetic field is considered. The Hall effect leads to the situation that
the Taylor-Couette flow becomes unstable forany ratio of the angular velocities of the inner and outer
cylinders. The instability, however, does not exist for both signs of the axial magnetic fieldB0. For positive
sheardV/dR the Hall instability exists for negative Hartmann number and for negative sheardV/dR the Hall
instability exists for positive Hartmann number. For negative shear, of course, the Hall instability combines
with the magnetorotational instability, resulting in a rather complex bifurcation diagram. In this case the critical
magnetic Reynolds numbers with Hall effect are much lower than without Hall effect. In order to verify the
presented shear-Hall instability at the laboratory with experiments using liquid metals, one would need rather
large magnetic fields (;107 G).
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I. INTRODUCTION

The Taylor-Couette flow between concentric rotating c
inders ~Fig. 1! is a classical problem of hydrodynamic an
hydromagnetic stability@1,2#. Viscosity included and in the
absence of any tangential pressure gradient the most ge
form of the angular velocityV of the flow is

V~R!5a1
b

R2
, ~1!

wherea and b are two constants related to the angular v
locities V in and Vout with which the inner and outer cylin
ders are rotating. WithRin and Rout (Rout.Rin) being the
radii of the two cylinders one finds

a5V in

m̂2ĥ2

12ĥ2
and b5V inRin

2 12m̂

12ĥ2
, ~2!

where

m̂5Vout/V in and ĥ5Rin /Rout. ~3!

According to the Rayleigh criterion the ideal flow is stab
whenever the specific angular momentum increases outw
d(R2V)2/dR.0 or

m̂.ĥ2. ~4!

The viscosity, however, has a stabilizing effect so that a fl
with m̂,ĥ2 becomes unstable if the Reynolds number of
inner rotation exceeds some critical value.
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If it is not too strong, the magnetic field can play a des
bilizing role and can lead to magnetorotational instabil
~MRI!. This MRI was discovered decades ago for Tayl
Couette flow@3,4#, but its importance as the source of turb
lence in accretion disks with differential~Keplerian! rotation
was only recognized by Balbus and Hawley@5#. In the mo-
lecular hydrodynamic~MHD! regime the Rayleigh criterion
for stability, Eq.~4!, changes to

m̂.1 ~5!

for a weak magnetic field. The hydrodynamic Taylor-Coue
flow is only stable if its angular momentum increases w
radius but the hydromagnetic Taylor-Couette flow is stabl
the angular velocity itself increases with radius. The M
decreases the critical Reynolds number for weak magn
field strengths for hydrodynamically unstable flow and it d
stabilizes the hydrodynamically stable flow for

FIG. 1. Cylinder geometry of the Taylor-Couette flow.
©2004 The American Physical Society03-1
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G. RÜDIGER AND D. SHALYBKOV PHYSICAL REVIEW E 69, 016303 ~2004!
ĥ2,m̂,1. ~6!

There are very basic facts for the MRI. At first, MRI depen
only on the amplitude of the magnetic field and does
depend on its direction. At second, MRI exists in hydrod
namically unstable situations (m̂,ĥ2) only if the magnetic
Prandtl number Pm is not very small as shown in@4# already
and later in@6–9#; the critical Reynolds numbers vary a
1/Pm for hydrodynamically stable flows (ĥ2,m̂,1) @7,8#,
so that it is the magnetic Reynolds number which directs
instability. Pm is really very small for laboratory condition
(1025 and smaller!. This is the main reason why the MRI ha
never been observed experimentally in the laboratory.

The importance of the MRI for accretion disk physics a
for planned new experiments@6,10,11# highly stimulated the
theoretical investigation of the stability of the Taylor-Coue
flow @6–12#.

Here we are discussing the marginal stability of a flu
with Hall effect. The influence of the Hall effect on MRI wa
first discussed by Wardle@13# and later by Balbus and Ter
quem@14# and Sano and Stone@15,16# in relation to accre-
tion physics. We mainly shall consider only axisymmet
disturbances but in relation to the Cowling theorem of d
namo theory also the nonaxisymmetric modes withm51 are
concerned.

II. BASIC EQUATIONS

R, f, andz are the cylindric coordinates. A viscous ele
trically conducting incompressible fluid between two rot
ing infinite cylinders in the presence of a uniform axial ma
netic field admits the basic solutionUR5Uz5BR5Bf50
and

Bz5B05const, Uf5aR1
b

R
, ~7!

whereU is the velocity,B is the magnetic field, anda andb
are given by Eqs.~2!. We are interested in the stability of th
solution. The perturbed state of the flow is described by

uR8 , RV1uf8 , uz8 , BR8 , Bf8 , B01Bz8 . ~8!

The linear stability problem is considered in full general
with nonaxisymmetric perturbations. By developing the d
turbances into normal modes, the solutions of the lineari
MHD equations are considered in the form

uR85uR~R!ei (mf1kz1vt), BR85BR~R!ei (mf1kz1vt),

uf8 5uf~R!ei (mf1kz1vt), Bf8 5Bf~R!ei (mf1kz1vt),

uz85uz~R!ei (mf1kz1vt), Bz85Bz~R!ei (mf1kz1vt). ~9!

The equations have been derived by Chandrasekhar@17# and
Roberts@18#. We use here only a different Ohm’s law an
different normalizations.

The general form of the induction equation with Hall e
fect is
01630
t
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]B

]t
5rot ~u3B!2b rot~rot B3B!1hDB, ~10!

with h as the magnetic diffusivity andb the Hall parameter
which both are considered as uniform in the presented
culations. The electric field for which the induction equati
~10! results is

E5
J

s
2u3B1b~rot B3B!. ~11!

We have used the additional relations divB50 and J
51/m0 rot B. The Navier-Stokes equation is used in its sta
dard form, i.e.,

rS ]u

]t
1~u•“ !uD52“P1rnDu1J3B. ~12!

Let d5Rout2Rin be the gap between the cylinders. We us

H5~Rind!1/2 ~13!

as the unit of length, the velocityh/H as the unit of the
perturbed velocity,n/H2 as the unit of frequencies,B0 as the
unit of the magnetic field fluctuations,H21 as the unit of the
wave number, andV in as the unit of theV. The dimension-
less numbers of the problem are the magnetic Prandtl n
ber

Pm5
n

h
, ~14!

wheren is the kinematic viscosity, Ha is the Hartmann num
ber, and Re is the Reynolds number of the inner rotation

Ha5
B0H

Am0rnh
, Re5

V inH
2

n
, ~15!

wherer is the density. We only consider marginal stabili
and stationary modes, i.e.,v50. Using the same symbol
for normalized quantities as before, the equations can
written as a system of ten equations of first order, i.e.,

duR

dR
52

uR

R
2 i

m

R
uf2 ikuz , ~16!

duf

dR
5X22

uf

R
, ~17!

duz

dR
5X3 , ~18!

dX1

dR
5S m2

R2
1k2D uR1 i ~v1mReV!uR12i

m

R2
uf

22ReVuf2 ikHa2BR , ~19!
3-2
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dX2

dR
5S m2

R2
1k2D uf1 i ~v1mReV!uf22i

m

R2
uR12aReuR

2 ikHa2Bf1
m2

R2
uf1k

m

R
uz2 i

m

R
X1 , ~20!

dX3

dR
5S m2

R2
1k2D uz1 i ~v1mReV!uz2

X3

R
2 ikHa2Bz

1k
m

R
uf1k2uz2 ikX1 , ~21!

dBR

dR
52

BR

R
2 i

m

R
Bf2 ikBz , ~22!

dBf

dR
5X42

Bf

R
, ~23!

dBz

dR
5 i S m2

kR2
1kD BR2

Pm

k
~v1mReV!BR1uR2

m

kR
X4

2 i b̂
m

R
Bz1 i b̂kBf , ~24!

dX4

dR
5S m2

R2
1k2D Bf1 iPm~v1mReV!Bf22i

m

R2
BR

2 ikuf12Pm Re
b

R2
BR1b̂

m2

R2
BR2b̂2

km

R
Bz

1b̂2k2Bf1 i b̂~v1mReV!PmBR2 i b̂kuR

1 i b̂
m

R
X4 , ~25!

with

b̂5
bB0

h
. ~26!

Introducing dimensionless quantities the latter can also
written as

b̂5b0Pm1/2Ha, ~27!

with

b05
b

Rout
A m0r

ĥ~12ĥ !
. ~28!

The definitions ofX2 , X3, and X4 follow from Eqs. ~17!,
~18!, and~23! and theX1 is given by

X15
duR

dR
1

uR

R
2P2Ha2Bz , ~29!
01630
e

with P as the pressure fluctuation. The influence of the H
effect is indicated by theb̂ terms in Eqs.~24! and ~25!.
Within the frame of the short-wave approximation, witho
the induction of the flow field and for smallb a local disper-
sion relation of the form

Rm}2
1

bdV/dR
~30!

results with magnetic Reynolds number Rm5Pm Re, indi-
cating that positiveb and negative sheardV/dR form the
same instability as negativeb and positive sheardV/dR.

An appropriate set of ten boundary conditions is need
to solve the system~16!–~25!. It is easy to see that the Ha
effect leaves the boundary conditions used in@8# as un-
changed, i.e., the no-slip conditions for the velocity,

uR5uf5uz50, ~31!

and for the magnetic field,

dBf

dR
1

Bf

R
50, BR50, ~32!

for conducting walls. The boundary conditions are valid f
R5Rin and for R5Rout. For insulating walls the magneti
boundary conditions are different atR5Rin andR5Rout, i.e.,

BR1 i
Bz

I m~kR! S m

kR
I m~kR!1I m11~kR! D50 ~33!

for R5Rin and

BR1 i
Bz

Km~kR! S m

kR
Km~kR!2Km11~kR! D50 ~34!

for R5Rout where I n and Kn are the modified Bessel func
tions. With

Bf2
m

kR
Bz50, ~35!

the condition for the toroidal field is the same at both loc
tions.

III. RESULTS

The numerical method is already described in our pap
@7# and@8#. Here only the results including the Hall effect a
presented.

A. Positive shear

In the present section an instability is described wh
exists only in the presence of the Hall effect. It destabiliz
flows with m̂.1 ~i.e., with positive sheardV/dR) for which
so far no other instability is known. Figures 2–4 illustrate t
instability for both conducting and nonconducting bounda
conditions for a container with a wide gap (ĥ50.5). The
flow is unstable but only for negative Hartmann number, i
if angular velocity and magnetic field have opposite dire
tions. The result depends on the sign of the Hall resis
3-3
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ity; here the positive Hall resistivity is used. For negati
Hall resistivity the orientation is opposite. The fact that H
effect destabilizes flows with the angular velocity increas
outwards was already described by Balbus and Terqu
@14#.

For small Hartmann number theb21 behavior of Eq.~30!
is confirmed and for strong magnetic fields the instability
suppressed. The minimum value of the Reynolds num
already results for Hartmann number of order unity; it b
comes smaller and smaller for increasing shear@see the esti-
mate~30!#. Figure 4 demonstrates the validity of the relati
Re}1/Pm which is also indicated by the relation~30!. Again
the Reynolds number takes its minima at such Hartm
numbers that the Lundquist number Ha* 5HaAPm is con-
stant.

Figures 2 and 3 demonstrate that the influence of
boundary conditions is not negligible what is quite char
teristic for the magnetic Taylor-Couette problem~even in the
small-gap approximation! as shown already by Niblett@19#
and later by Ru¨diger et al. @8#. In particular, for vacuum
boundary conditions the suppression of the instability
strong magnetic fields is a rather weak effect compared w
the magnetic suppression in a container with perfe
conducting cylinder walls. Once the Reynolds number
ceeds the minimum value given in the Fig. 3, then
Taylor-Couette flow is unstable for a very wide range
Hartmann numbers.

FIG. 2. The line of marginal stability for magnetic Taylo

Couette flow with Hall effect (b051) for ĥ50.5, Pm51 and for

positivedV/dR: m̂52 ~solid line!, 1.5 ~dashed line!, and 1.2~dot-
ted line!. Boundary conditions~32! for conductingcylinder walls.

FIG. 3. The same as in Fig. 2 but for thevacuumboundary
conditions~33!–~35!. Note the very weak influence of the magne
field on the onset of the instability.
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According to Eq.~2!, the rotation law does not depend o
the inner angular velocityV in for m̂@1 and the situation is
practically the same as if the inner cylinder were at rest.
this case, the Reynolds number of the outer rotation, Reout, is
the real parameter of the problem instead of Re:

Reout5m̂Re5
VoutH

2

n
. ~36!

We have indeed numerically confirmed a behavior such
Re }1/m̂ for large m̂. The value of Reout corresponding to
minimal Re~which is for Hartmann number of order unity!
is

Re.20. ~37!

In Fig. 5 the critical wave numbers are given for whic
the Reynolds number is minimum for given Hartmann nu
ber. The three curves represent the solutions with differ
boundary conditions. The solid line stands for vacuum c
ditions for both cylinders while the dashed line concer
perfect-conductor solutions. If the outer boundary condit
concerns the vacuum and if within the inner cylinder there
a perfect conductor, then the dot-dashed line gives the w
numbers. As expected, the standard behavior can be
served; i.e., the wave number sinks for growing magne
field so that the cells are elongated parallel to the magn
field lines. The vertical extension of one cell follows fro
the relation

FIG. 4. The same as in Fig. 3 but for Pm51025.

FIG. 5. The dependence of the critical wave numbers on
magnetic field for various boundary conditions: vacuum conditio
~solid lines!, perfect-conductor conditions~dashed lines!, and mixed
conditions~vacuum outer cylinder, perfect conductor inner cylind

dot-dashed lines!. m̂52.
3-4
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dz

Rout2Rin
5

p

kcrit
~38!

~for ĥ50.5). For perfect-conducting cylinders, however, t
trend is opposite. For this case the vertical wave numberkcrit
becomes very small for small Hartmann numbers. The r
son is that a solutionBf}R21 andBR50 exists which ful-
fills the boundary conditions~32! and Eqs.~16!–~25! for v
5k5Ha50. This current-free solution, however, is alwa
marginal so that it cannot be excited if it does not exist at
beginning. If one of the boundary conditions differs from E
~32!, then this solution cannot exist and the wave numb
have their normal behavior as shown in Fig. 5.

B. Negative shear

The Hall effect also modifies the critical Reynolds num
bers for both hydrodynamically unstable flows (m̂,ĥ2) and
for magnetohydrodynamically unstable flow (m̂,1) result-
ing in a rather complex situation illustrated with Fig. 6. T
dashed line is the MRI without Hall effect and the dotted li
is the shear-Hall instability with neglected flow perturb
tions, i.e., without MRI. It is insofar the counterpart to th
lines in Fig. 2. An instability is shown of the axial magnet
field as the result of a combination of shear and Hall effe
The combination of MRI and this shear-Hall instability
given as the solid line in Fig. 6. A deep minimum of th
Reynolds number is produced for weak magnetic fields,m
deeper than the minimum resulting without Hall effect. O
the other hand, for increasing Hartmann numbers the s
line has a very weak slope so that the magnetic-field dep
dence of the combined instability~‘HMRI’ ! is rather weak as
already shown by Wardle~ @13#; see his Fig. 1c!. Again the
Hall effect is important for only one orientation of the ma
netic field.

IV. NONAXISYMMETRIC MODES

It is also important to probe the existence of nonaxisy
metric modes. After the Cowling theorem only nonaxisy
metric modes can be maintained by a dynamo process.

FIG. 6. The same as in Fig. 2 but for resting outer cylind

(m̂50, i.e., negativedV/dR). b050 ~dashed line! and b051
~solid line!. The dotted line is forb051, but for u50 ~velocity
fluctuations neglected, i.e., kinematic case!. The minimum of the
dashed line indicates the Lorentz force-induced MRI.
01630
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already have discussed the appearance of nonaxisymm
modes for the magnetic Taylor-Couette flow with negat
shear. The common result was that the lines of marginal
bility for m50 andm51 have a very different behavior fo
different electrical boundary conditions@12#. One finds
crossovers of the stability lines form50 andm51 for con-
tainers with conducting cylinder walls and one never fin
such crossovers for containers with vacuum boundary co
tions. The same happens here for the shear-Hall instab
for magnetic Taylor-Couette flows with positive shear, i.
m̂.1. In Fig. 7 the lines for both axisymmetric and nonax
symmetric modes are given for conducting boundary con
tions and in Fig. 8 they are given for vacuum boundary co
ditions. The crossover of the lines only exists for conduct
cylinder walls. As usual, in the minimum them50 mode
dominates but for stronger magnetic fields the mode w
m51 dominates.

V. DISCUSSION

We have shown that the Hall effect destabilizes the m
netic Taylor-Couette flow so that for any value of the para
eter m̂ a critical amplitude and one of the directions of th
magnetic field exist for which the flow is unstable.

Taylor-Couette flows withm̂.1, i.e., with positive shear
dV/dR, are stable in both hydrodynamic and tradition
MRI regimes. If, however, the Hall effect is included in th
induction equation, then even such a flow becomes unst
under the influence of an axial magnetic field but only f
one of the two possible orientations of the field. For vacu
boundary conditions and not too small magnetic fields th
is only a rather weak dependence of the critical Reyno
number on the Hartmann number~see Fig. 3!.

The other magnetic orientation destabilizes all the flo

r

FIG. 7. The lines of marginal instability for conducting cylinde

walls for m̂52 with axisymmetric (m50, solid line! and nonaxi-
symmetric (m51, dotted line! modes. Note the crossover of bot
lines.

FIG. 8. The same as in Fig. 7 but for vacuum boundary con
tions. No crossover of both the lines exist.
3-5
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with m̂,1, i.e., with negativedV/dR ~see Fig. 6!. The lin-
earized induction equation~10! is invariant against the trans
formation

B0→2B0 , u0→2u0 , ~39!

so that the simultaneous change of the signs ofdV/dR and
B0 leads to the same instability. After the splitting of th
induction equation into poloidal and toroidal compone
one finds the scheme

Btor ——→
Hall

Bpol8 ——→
Hall

shear

Btor8 ; ~40!

hence also the shear must be changed if the Hall effec
changed. If this is true, then the shear is necessary for
existence of an instability. The shear appears as the en
source of the instability.

The magnetic field for an important influence of the H
effect should be very high. The minimum value of the Re
nolds number for both positive and negative shear exists
b̂;1. The corresponding value of the magnetic field is

B0.
h

b
. ~41!

The Hall coefficient (m0b in our notation! for liquid metals
is about 10210 m3/C, with h;1021 m2/s and with m0
54p31027 for the magnetic fieldB0.107 G is yielded.
This value is too high for the laboratory experiments.

We have another situation for astrophysical applicatio
@13–16#. In Table I the Hall coefficients and the magne
diffusivities are given for various objects which are so co
or have so huge magnetic fieldsBobs that the Hall effect is
suspected to be important.

The situation in protoplanetary accretion disks is p
sented in Fig. 9 where the numbers are taken from a mo

TABLE I. Astrophysical objects@protoplanetary disks, pulsar
~NS!, and white dwarfs~WD!#: Hall coefficientm0b, magnetic dif-
fusivity, critical magnetic field after Eq.~41!, and observed mag
netic field.

Object Hall coeff. (m3/C) h (m2/s) B0 ~G! Bobs ~G!

WD 10220 1029 109 107

NS env. 10225 10213 1010 1012

NS core 10228 10214 1012
n
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by Sano and Stone@15#. The amplitude of the magnetic fiel
comes from the condition that the magnetic Mach num
equal 1. Above the lowest line the Hall effect dominates
Ohmic dissipation and v.v. One finds that indeed the m
netic field may be so strong that the Hall effect dominates
Ohmic dissipation. The critical magnetic field amplitude
R51 AU is about 0.1 G. Such high values can hardly
imagined as due to a magnetized central object. Polar fi
strengths of order;105 G at the surface of a protosun a
needed in order to produce 0.1 G at a distance of 1 AU.

Magnetic fields with amplitudes of 1 G at 1 AU should
thus only be generated by the action of a~turbulent! dynamo.
In this case, however, we cannot use the molecular cond
tivities to estimate the values of the parameters as it w
done in@13–16#. E.g., the turbulent magnetic diffusivity ma
increase by several orders of magnitude. No considerat
of the effect of turbulence on the Hall diffusivity are know
to us. This effect might be smaller than the influence on
magnetic diffusivity due to the linear dependence of the H
diffusivity on the magnetic field. If it is so, then the role o
the Hall effect for the weakly ionized protostellar accreti
disks might easily be overestimated.
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FIG. 9. The magnetic constellation in accretion disks after S
and Stone@15#. Solid line: magnetic-field amplitude if magneti
Mach number equals unity. Dashed line: magnetic-field amplitud
Hall time scale equals magnetic dissipation decay time.
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