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Electric microfield distributions in electron-ion plasmas
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The low-frequency electric microfield distribution in a Coulomb plasma is calculated for various plasma
parameters, from weak to strong Coulomb coupling and from zero to strong electron screening. Two methods
of numerical calculations are employed: the adjustable-parameter exponential approximation and the Monte
Carlo simulation. The results are represented by analytic fitting formulas suitable for applications.
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I. INTRODUCTION for very hot or rarefied plasmas, for which the Coulomb
coupling parameter

Because of the Stark effect, stochastic electric microfields
influence optical and thermodynamic properties of a plasma. _(Ze)* 125x10°K 115,573 !
First, they affect the profiles of spectral lines and effectively —akgT - T N0 @
lower photoionization thresholds of atoms and ions im-
mersed in a plasmid.,2]. A comparison of experimental and is close to zero. Her&e is the ion chargeT is the tempera-
theoretical widths and shapes of the Stark-broadened spectisire, kg is the Boltzmann's constara,= (47n;/3)~ *is the
lines is widely used for plasma diagnostiesg., Refs[3,4]).  ion-sphere radius); is the ion number density, amdy is the
Second, in some theoretical models of the plasma equatigilectron number densityn(=2Zn;) in units of 16°cm™>. As
of state(e.g., Refs[5,6]), the microfield distribution is used We demonstrate below, the Holtsmark approximation is inac-
in order to calculate occupation numbers of the bound specurate already af~0.1. In modern plasma experiments,
cies (although such a calculation is not free from principal M@ approach unity, whereas in stellar matter it can be much
difficulties, as discussed in Rdf7]). It was shown recently larger. In these cases, correlations of plasma particles should

[6] that a more accurate description of the microfields entaiIQOtVbe_ neglected._ i develooed in th ti
a considerable improvement of the equation-of-state model arious approximations were developed in thé past in or-

In many cases, the microfield perturbation can be treate?hear tﬁst:l:ﬁet?:et'ﬁg dgoé;eéz[:ggsépfﬂgc&%ﬁ'ﬂf&&olﬁ
as quasistationary. Then the problem is reduced to determ Y 9 b

. . . le,l?ﬂ based on a cluster expansion in powers of density.
nation of the probabl'llty d|str|l:_)ut|'on of thiow-frequency The electron screening is usually described by a Debye-like
component of perturbing electric fields.g., Ref[8]), ass0- (v awg effective potential, introduced in the context of
ciated with a stochastic distribution of perturbing ions, vi-rofield distributions by Hoffman and Theimgr4]. In the
whereas the electrons can be assumed to adjust instan§gsit of extremely strong couplingI'>10, and without
neously to a configuration of the ions. The Iow-frequencyscreening’ the harmonic oscillator model by May&§] is
microfields are appropriate to use in the equation-of-statgppjicable, in which every ion is assumed to oscillate inde-
models[6] and in calculation of spectroscopic line profiles pendently of the others around its equilibrium position at the
for those radiative transitions whose frequency does not exon-sphere center.
ceed the typical frequency of microfields produced by ther- The first theory capable to provide reliable numerical re-
mal fluctuations of the electron density. For example, Stehleults for strongly coupled plasmas with electron screening
and Jacquemd®] used the model microfield method to ana- proved to be the adjustable-parameter exponential approxi-
lyze the line shapes and line dissolution in hydrogen plasmanation (APEX), based on a special parametrization of the
spectra. electric microfieldE produced on a selected test particle

Holtsmark [10] has derived the microfield distribution (neutral or charged “radiator” of chargg,) which under-
function assuming that the ions are not correlated and thgoes the influence of charged plasma parti¢tesrturbers”
electron screening is negligible. This assumption is justifiedbf speciess and of chargeZ,). This method has been de-

veloped for Coulomb systeni46] and adapted for screened
Coulomb systems and ion mixturg8,17]. It involves non-

*Electronic address: palex@astro.ioffe.rssi.ru interacting quasiparticle representation of the electron-
"Electronic address: chabrier@ens-lyon.fr screened ions, designed to yield the correct second moment
*Electronic address: Dominique.Gilles@cea.fr of the microfield distributior] 18]
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4mnikgT s . tric microfield probability distributions with an accuracy
(E-E)= Z—ksZ Cozaf drre *'g,(r), (2  comparable to small differences between the MC and APEX
' 7 0 results.

In the following section, we describe basic assumptions
used in our calculations and write down some asymptotic
results. In Sec. Ill, we present results of numerical calcula-
tions and analytic approximations for microfield distributions
produced at a neutral or charged point by ions interacting via

whereg,(r) andc, denote the radial distribution function
(RDF) and the relative abundance of speaiegespectively,
and where, is an effective electron-screening wave number.
After introducing the effective single-particle field in the

form X
unscreened or screened Coulomb potentials. The results are
. o (Ata,n) summarized in Sec. IV.
EU—der—ze o, (3)
IIl. METHOD
':jhg adjustable parametdfs,} are chosen to satisfy the con- A. Basic assumptions
ition

We consider a nonrelativistic, isotropic, overall neutral
plasma at the thermodynamic equilibrium. The ions are as-
47TJ €°Papex(€)de=(E-E). (4 sumed to be classical and pointlike. The electric field created
at a pointr by an ion placed at; equals E(r;—r)=
The expression on the left-hand side of this equation contains (Ze) ~1VV(|r;—r|), whereV(r) is an effective pair poten-
the parameterga,} to be determined, whereas the right- tial. This potential is taken in the Debye-tkel (or Yukawa
hand side can be evaluated using E®), if the RDF is  form,
known. The RDF thus provides a scheme for evaluating the
APEX microfield distribution and is a central ingredient
whose accuracy determines the one of the APEX microfield
results. In our implementation of the APEX technique, we ) o
have used the hypernetted-chain RDF calculat/dgs-20.  In the linear approximation, a test chargembeddedat r
On the other hand, with the advent of powerful computers=0) creates perturbation of electron number densitfr)
it is now possible to calculate the microfield distribution = (gn_/au)(r), wheren(r)=—ed(r) is the perturbation
from Monte CarlO(MC) or mOleCUlar'dynamiCS simulations of the electron chemical potentia], and d,(r) is the excess
?f plasmfa?z\ivitgé;eMminimumthof |Sitrtnp“fyirt]f? SSSLlllmptiO”S electrostatic potential determined by the Poisson equation
€.9., Relsi21-23). Moreover, the latter Metnods allow oNe g2 1y — _ 4 71q%(r)—en(r)]. Thus in the linearfirst-
:O stu_dy Ithte efrf:_ec;s_fof microfield non;;n;:jorrg.@;%Ztﬂ_ and . order perturbation approximation §2+4me?in,/
o simulate high-frequency microfie istributions in o) b(r)= —4wqs3(r), which leads to the well-known

Dased on & numerical Simulation of space configurations of 3 REf. [20) expression for the efective. electron-
P 9 creening wave numbé,

system of particles, whereas the molecular-dynamics tech-
nigue traces the time evolution of the system. For the low- Ne
frequency microfield, dynamical effects are unimportant, and k§=47762(7—= W(Zme)m(kBT)llzl —uAx), (6
the two methods yield the same results, as demonstrated, ®

e.g., in Ref.[27]. Therefore, it is sufficient to use the MC wherel ,(y)=ex"dx/(e* ¥+1) is the Fermi integral, and

method in this case. _ : : ;
. L o =ul/kgT is determined from the equation
With these powerful tools, the microfield distribution can X=#Ts a

be calculated now for any practically important combination Lo x) = m253(MkeT) ~¥2n /2. (7)

of plasma parameters. However, plasma spectroscopy and

equation-of-state models require knowledge of this distribuThe solution of Eq(7) and the right-hand side of E¢G) are

tion at many different points or even in continuous areas ofjiven by accurate Padgpproximations in Ref.29].

the plasma parameter space. In this case, either extensive In the limits of weak or strong electron degeneraky,
numerical tables or approximate analytic expressions artends to the inverse Debye length for the electrons or to the
necessary. Thomas-Fermi wave number, respectively.

We present results of calculations of the low-frequency We adopt the conventional assumption that the potentials
microfield distribution function at a neutral and chargedV(|r;—r|) are additive, which is strictly valid in the limit
plasma point for various values of ranging from 0 to 100 ks—0. Then the electric fiel&(r) is also the sum of elemen-
and for various values of an effective electron-screeningary electric fieldsE(r;—r).
length. We consider plasmas composed of a single species of |t js convenient to introduce the dimensionless figldnd
ions; in particular, in the case of a charged test particle, it$he screening parametsy
charge is assumed to be equal to that of perturbers. The cal-
culations are performed mainly by the MC method; for com- B=(a%/Ze)E, s=ak;. (8
parison we have done also APEX calculations. We also 5 5
present analytic formulas that reproduce the calculated ele@lso, B=(a%/Ze)E.

—kgr

V(r)=(Ze)?

®

Pt
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In the canonical thermodynamic ensemble Wf{1) par-  ciably. Then all equilibrium quantities depending only on
ticles, the probability density of the modulus of the figRl, particle positions(electric microfield, pair correlation func-
=|B(ro)|, can be written as tion, etc) can be calculated. In all our simulations, we try to

get the maximum precision by minimizing the statistical er-

4132 N rors. So we considered large boxes of particlestweenN
P(B)= ZN+1J f 9 B(fo)—;l B(ri—To) =600 andN=800) and, for each statd’(s), 1x10’ to 6
x 10" configurations were generated after equilibrium. This
Xexg —W(rg,ry, ... r)/KgTldrq---dry. number of samples is large enough for the precision needed

for all microfield distribution results discussed in this paper.

©)

Here C. Asymptotic and approximate expressions

The described MC sampling procedure does not directly
rovide the probability density for extremely weak or stron
ZNHZJ o J exf = W(ro,ry, . .. M) kgT]dry- - dry 1Ei)elds, Whichpare give>r/1 by rar)é Configuratioﬁs. It is therefor%
useful to know asymptotic behavior &(8) in the limits
is the canonical partition function andV is the g—0 andB—c.
potential energy of the configurationV(rq,rq, ... ,rn) In the first case, the methods of Baranger and Mz&f
=334V(Iri—r;[)+Vg, whereVy is the potential energy and APEX[8,16] show a parabolic dependenceR(f3) near
of the background of electrons. Our goal is to calculate théhe origin. This behavior is also visible on MC results. Thus,
function P(8) in the thermodynamic limitN—o. In the We assume tha®(pB)/B? is constant near the origin.

following paragraph, we shall discuss how to perform this In the case of very strong fields, exact analytic results are
calculation. available for the unscreened Coulomb potential only. The

Holtsmark distribution, valid ai'—0 for any 8, reads/10]

B. Monte Carlo technique

Pu(B)= 27'8f:x exp( —x%?)sin( 8x)dx. (11)

In the numerical MC calculations, the coordinates Nf (
+1) particles(one test particle andl perturbergare chosen
in a cubic box of side length such that N+1)/L3=n;. In At B—, this distribution has the asymptot®(p)
order to include the effect of distant particles, the box is~ 149682 which is close to the asymptote of the nearest-
replicated by its “images” filling the space with the step  Neighbor(NN) field distribution[32]

The sum of the interaction potentials with all ion images is — -5/2 _ p-3R2

calculated using the Ewald techniq{@0] and, in order to Pan(B)=1.58 " exp(=f 75, (12
ensure isotropy, the averaging over the complete solid angle In the opposite limit of extremely strong correlatioris (
is applied. As shown in Ref21], a result of this procedure is —), the Mayer mode[15] yields (for the charged test
equivalent to the replacement of the potentflin the cube  particle

by an effective potentiaV/, , Pu(fB)= \/%Fg,zﬁz exp(— T B212). (13)
Vi(r) ek Cy sinhkgr) 4w [ sinf(ker) L

——= 53 , Figure 1 illustrates the differences between various
(Ze) r L ke KEL3|  Ker asymptotic theorie$NN, Mayer model and numerical re-
(10 sults at finitel'. Compared to the Holtsmark distribution
(11), the most probable field values are shifted considerably
where Cy, is a numerical constant that tends to the Made+g |ower B, the shift being much larger at a charged point.
lung’s constante.g., Ref[31]) in the limit k,—0. The total The NN approximatior(12) correctly describes the case of
potential energyV is obtained by the summation ®f over largeg for the neutral point but fails for the charged point or
all pairs of particles. at smallB. The Mayer distributior(13) fails to describe the
During the MC run, an ion within the box and its dis- high-field tail of P(8) but provides the most probable field
placement are chosen randomly. If the displacement bringghich, at thisT', is offset by 20% only. At contrast, the
the ion outside the box, the ion is replaced by its image. IPAPEX and MC results are in close agreement $or2.
strongly correlated plasmas, the displacement is limited by a The Mayer model fails in the strong-field limit, because in
maximum distance smaller than in order to avoid calcula- this case one should consider a test ion that lies at a very
tion of the energy for highly improbable configurations. Firstshort distance = 8~ 12 from the nearest perturbing ion. Then
10* ion configurations are discarded in order to erase tracethe geometrical and Boltzmann factors give(g)
of the starting configuration. The state of equilibrium is~13*5/2e*Fﬁ1’2 at B—o. In Appendix A, we present deriva-
searched by the Metropolis algorithm: the energy differenceion of a more accurate asymptotic expressifd), which
AW is calculated between the consecutive configurationsyas previously given in Refd24,33 for the case of the
and the new configuration is accepted definitely if this dif- Coulomb potential without screening. A generalization of Eq.
ference is negative and accepted with probab@ity"/*sT,  (a4) provides an accurate functional form of the asymptotic
if AW is positive. The latter condition allows the system to behavior ofP() at largeg [24,34),
escape from trapping in a local energy minimum. When the _
system approaches equilibriu/ ceases to change appre- P(B)~K B~ exp —T gY2— p=3%?), (14

036412-3
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T 1 simulation of practical interest, it is always possible to find

r=7 1 appropriatel: andK to fit the high-field tail of the microfield
distribution.

—— —— - Holtsmark

_____ Il. RESULTS
A. Coulomb potential

In this section, we present results of MC and APEX cal-
culations and analytic approximations for the microfield dis-
tribution brought about by the one-component plasma ions
interacting via the Coulomb potential without screening. In
this case, the probability densiB depends o8 andT'.

P(g)

1. Neutral point

First, we consider the distribution of electric microfields
applied to a neutral test particle embedded in a plasma. If the
3 plasma is weakly coupled? () is given by the Holtsmark

g formula (11). In theoretical modelge.g.,[5,6]) one is often
interested in the cumulative probability distribution defined

FIG. 1. Microfield distributions produced by ions interacting via as
the unscreened Coulomb potential in a plasmBaf7 at a neutral
and charged point in the plasma. Mgblid lineg and APEX(short- B
dashed curvenumerical results are compared with analytic ap- Q(ﬁ):f P(B")dB’. (15
proximations by Holtsmark(long dashes Mayer, and nearest 0
neighbor(dot-dashed lines

For the Holtsmark distributionQy(8)~1—0.99783%? at
~ ~ ~ — 00, - -
whereK andI’ are adjuEtabIe parameters. In practices a ﬁ ai onsF?(g g}:tzllgf rgf& gic(uﬂr;l tﬁ ar\(/a:og : (lerzuzgtr:cs)?rui?g (rjo>l<)|y
free parameter, where&s can be determined from the nor- Hummer[35].
malization constrain& An example is given in Fig. 2. In this  Wwjth increasingl’, the field distribution becomes nar-
example, the value df is close to the exadt, but this is not  rower, as shown in Fig. 3. The decrease of the most probable
the general case. However, as shown in R&#%,34), forany  value 8., of the dimensionless fiel@, which corresponds to
the maximum ofP(B), can be described by a simple ap-

proximate formula
0N APEX ]
10” — MC on 1.608+0.24\T 16
- - - Pasymptotic m 1+0.77\/F .
107 1
. The asymptotic behavior d(8) remains power law, as in
= 10 r=3.s=0.75 | the case without Coulomb coupling. This facilitates construc-
10¢ L . ’ ] tion of self-consistent rational approximations@{g) and
P(B). We have calculate®(g) for variousI” from 0 to 10
10° | ] by the APEX method and fof up to 100 by the MC tech-
N nique. Our fit toQ(B) reads
10° | RN
-7 I I I I I I QOBS_1'3339/2+BG
T2 4 6 8 10 12 1 Q(B)= , U 17
B a1+ 028°+0asB _§B +B

FIG. 2. Comparison, fof'=3 ands=0.75, of probability den-
sity distributionsP(8) at a charged point, calculated by different Where 0= an(1+ B,VT) ", and the parameters,,, B,
methods: Monte Carldsolid line), APEX (dotted ling, and the —andy, are given in Table IP(3) is obtained from Eq(17)
asymptotic expression(14) (dashed ling Coefficients of the by elementary differentiation. AI'=0, this differentiation
asymptotic expression have been fitted on MC points above theeproduced(B) at anyB with a maximum fractional error
cutoff value =5, T'=3.06, andk=31.011. The asymptotic ex- Of 0.24%. At finitel", the difference between the fit and the
pression is a good representation of the high-field taP8) since ~ MC data increases up to several percent, remaining, how-
it avoids the oscillations shown by the two other meth¢dlkC,  ever, not larger than the difference between the MC and
numerical statistical noise; APEX, Fourier transform oscillations APEX results, as one can see in Fig. 3.
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! | ! | ! | ! L 0 TITU [T I [T I T T[T TT[T 1-IIIIIIIIIIIIIIIIIIIIIIII

charged 1

— — Holts. |

P(g)

-1-06 0 056 1 -16-1-06560 05
log,, B log,, B

FIG. 4. Microfield distributions produced at a charged test par-
ticle by ions interacting via the Coulomb potential at varidus
from 0.1 to 100. MC resultgsolid lineg are compared with the
analytic approximatiorf20) (dotted curves The Holtsmark distri-
bution ('=0) is also plotteddashed ling

0 1 Z 3 40 01-35 ! B=\2IT o, Te=0.774+TY44T. (19
FIG. 3. Microfield distributions produced at a neutral point by . 'I;]he ml_cr'c;flelj pTrﬁbablllty de?SIP(; at varlg)us valtulesIbf
ions interacting via the Coulomb potential, fbor=0.0533, 1, 10, 'lfs ownin Igl - 1he _expr(])nei\n al r?cr.eas O’.B) atlarge
and 100. Numerical resultdVC, solid lines; APEX, short-dashed IS _more easlly seen in the logarit m"? scaleg. 5) AC-
lines are compared with analytic approximatiail?) (dotted  cOrding to Eq(14), the exponent at largg is proportional to

curves. The long-dashed curve reproduces the Holtsmark distribu-\/_E, and not toB? as in Eqs(13) and(18). Nevertheless, itis
tion (12). still possible to construct a self-consistent analytic approxi-

mation toQ(B) and P(B) analogous to Eq(17). Since the
asymptotes are qualitatively different in different coupling

2. Charged point regimes, this approximation is more complicated,
For the charged test particle, the asymptotic behavior of =~
P(B) at largeg is qualitatively different in the cases of zero Q(B)= Qo(B)+0.873/T Q—M(B. er) , (20)
and nonzerd'. WhenI" #0, the power law decrease B{ 8) 1+0.873,T

is replaced by an exponential. At modergteand largel’,
P(B) is approximately described by the Mayer distribution where
(13). The cumulative function of this distribution is

Qmw,r)—erfwr/z)—ﬁﬁeFBZ’% 18)

which is easily calculated using, e.g., the highly accurate

rational approximation t@xzerfc(x) in Ref. [36]. The most
probable value of the microfield provided by this distribution @. -0.5

is gM=\/2/T". With increasingl’, 8, for a charged point u%

decreases faster th@h, " given by Eq.(16). The MC results ~ ©

for B, are approximately described by the following modi-

fication of BN : -1
TABLE |. Parameters of Eq.17).

n 0 1 2 3 -1.5

a, 14.600 103.20 11.127 16.178

B 0.41 1.54 0.58 0.60

Yn 0.707 1.64 0.572 0.915

FIG. 5. Same as in Fig. 4 but on the logarithmic scale.
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qBexp—I'p")+p°

QolA)= [2.257 q(1+ %6275+ 15.352+1.238q g3+ g¥2Jexp — T Y3 + 8¢ 2
q=9.19+2.178I'*%*  and I''=T"/(1+0.191'°62%,
|
At I'=0, 9Qq/dB reproducesy(B) within 1%. The accu- The modification of the probability density profile with

racy deteriorates df ~0.1 but improves again at highér. variation of the plasma parametdisandsis shown in Figs.
in Figs. 4 and 5, differences between the fit and MC resultg—-10. In the most important range of the coupling parameter,

are barely visible at'=0.5, 3, 50, and 100. I'=10, the dependence &f(B) onI" becomes slow, as the
screening becomes sufficiently strong. For example, in Fig. 7
B. Effective screened potential we observe a significant modification &f(8) at s=0.05,

. . . L o when I' increases from 0.1 to 5, whered&y{B) is only
In this section, we consider microfield distribution in an slightly modified with the same increase Bf if s=1.5.

electron-screened Coulomb plasma. Assuming that the ions ‘5 the other hand. the profile &%(8) strongly depends
interact via the effective potentidb), we have performed p, the value of the screening paramet¢Fig. 8), especially

MC simulations ofP() for various values of the screening it s~ | this case, the most probable field is reduced dras-
parameter froms=0.05 tos=3.0 and the Coulomb coupling {icajly: simultaneously, the distribution acquires a long
parameter frqnf:O.l tol“floo._ln accord with an intui-  wai| » which shows that the values of3> B,, occur more

tive expectation, the MC simulations show that the typicalfian than in thes=0 case. Figure 9, which presents the
fields applied to a test particle are reduced when the electrog, o dependences on the logarithmic scale, clearly reveals
screening is taken into account. In this case, the probability, o o limiting power lawsPe 82 and 852 at small and

density P and its cumulative functiorQ depend on three 5,40 g \ajyes, respectively, in agreement with Sec. Il C. We
dimensionless argumentg, I', ands. Naturally, analytic  gge that these limits are approached considerably more
approximations in this three-dimensional space become COMYowly in the case of strong screening.

plex and less accurate than at fixed 0; nevertheless we A comparison of Figs. 9 and 10 shows tifats less sen-
have attempted to construct unified formulas for evaluationi;ie to s, whenT is large, in accord with the aforemen-
of P(B) with an accuracy that is sufficient for most applica- j5eq property of3, .

) Nevertheless, even &t>1, the sen-
tions; the results are presented below.

sitivity of P with respect tos remains essential.
It is possible to construct a fitting formula to the probabil-
ity function Q(B) analogous to Eq17), taking into account
The most probable field strength applied to a neutral testhe screening. Such parametric approximation is given in Ap-
particle, evaluated by the MC method, can be parametrized

1. Neutral point

as UL LA I AL AL LR B AL B
0.8 neutral point
1+0.15{T ol —005 |
BT 9)~BRs) == (22 T s
1+0.771+s)e 1%T . s=1.5 |
where 08
B©)(s)~[0.622+0.25s €] 1. (23 = [
_ , U 04
Equation(22) extends Eq(16) to the case whers#0. It is
valid for the whole considered range of plasma parameters, R
I'=100 ands=<3.
The reduction of the typical microfield strength applied to 02H
a charged test particle, when the screening is taken into ac- i
count, is illustrated in Fig. 6, where the dashed lines corre- /
spond to the case of a neutral test particle, which we consider 1y,
in this section. At a constatit, 3,, is a monotonically de- 00 ! 1 2 3 )
creasing function ok. The dependence @,, on I is less 8

obvious. At small values o$, B,, decreases monotonically

with increasindl’. However, the opposite is observed wten FIG. 6. “Most probable” field strengthnormalized according to
is large: in this casep,, increases with growind’. This Eg. (8)] as a function of the Coulomb coupling paramdfeat four
implies that the most probable field strength depends on values of the screening parameterDashed lines, neutral point;
stronger at small’ and weaker at largE. solid lines, charged point.
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s=3 r=50

[ r=0.5
neutral point

MC

log,, P(8)
|

| » -m - 1 1 1 1 I 1 11 1 I 1 1 1 1 I 11 1 1 I 1 1 1 1
0 0.5 1 1.5 2 2.5 -1.5 -1 -0.5 0 0.5 1
B log,, 8
FIG. 7. Microfield distributions produced at a neutral point in a FIG. 9. Same as in Fig. 8 on the logarithmic scale.

plasma by ions interacting via the screened Coulomb potential for

two values of the screening parametefdashed liness=0.05; assuming that the Coulomb interaction is screened according
solid lines,s=1.5) and two values of the Coulomb coupling param-to Eq. (5). As well as in the case of a neutral point, the
eterl". The analytic approximatiotAppendix B is shown by dot-  screening lowers typical microfield values. Dependence of
ted lines. the most probable fiel@,, on s andI" can be approximated

by a simple expression
pendix B and is shown in Figs. 7-10 by dotted lines. Al- y P P

though less accurate than the fits presented in Sec. Il A, this TY4LrT —i2
approximation reproduces well the numerical results ob- 9= 1+———| . (29
tained by the MC simulation. 0.774+0.54s €

2. Charged point Whereﬁﬁr?)(s) is given by Eq.(23). At s=0, Eq.(24) repro-

Consider now the microfield distribution created by duces Eq(19). The dependence g, onl’ at various values

plasma ions at a point where one of these ions is placeamc SIS pIotFed n F|g. 6 by_ solid lines. U_nllke the_ case of a
reutral point considered in the preceding sectlﬁf# de-
L L A L I A L creases monotonically with increasifigat any given value
[ s=3 r=05 1 of s.

charged point |

s=0.7
- — —=-58=0

log,, P(8)

P(g)

-1.5 -1 -0.5 0 0.5 1
log,, B

FIG. 8. Microfield distributions produced at a neutral point for
the coupling parametdr =0.5, for seven values of the screening B
parameters marked near the curves. MC resu(solid lineg are
compared with the analytic approximatiédotted lines. FIG. 10. Same as in Fig. 9 but fér=50.
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i r=10
4 |- charged point
[ MC
I /%25 fit
3 -

T rrr[rrrr|rrrr [t 1T Tt T T11

r=1.5

charged

— — — neutral

/I 11 I L1 1 |
0 0.5 1 1.5 2

FIG. 11. Microfield distributions produced at a charged test par- FIG. 13. Comparison of distribution8(g) at two values ofl"
ticle by ions interacting via the unscreenédiashed lines and (solid lines,I'=0.3; dashed linesl’=10) and seven values af
screened Coulomb potenti@olid lines, the screening parameger  (s=0.05, 0.50, 1.04, 1.5, 2.0, 2.5, and 3.0, from right to)left the
=0.7) forI'=0.1, 1, and 5. The analytic approximation given in logarithmic scale. Dotted lines show the approximatiéppendix

Appendix C is also shown for all casédotted curves

O).

The modification of the probability densitp(8) with smallerB. At s>1, however, the latter shift is accompanied

increasings or I is illustrated by Figs. 11-14. The depen-
dence on the coupling parameléremains qualitatively the
same as without screening: with the increas€ athe typical
field strengths become lower, and the distribut®{B) be-
comes narrower. The increasesdlso shifts the peak d? to

by a striking modification of the shape of the functiBna
fast growth at small3 is followed by a slow, gradual de-
crease ap3> By,

As in the case of the Coulomb potential, the limiting be-
havior of P(B) at 8> B, changes from power law dt=0
to the exponential decreased %%~ at B—o. This lim-
iting law is reached very slowly, i§ is large, as clearly seen

1

log,, P(8)

I T T T R I B

§=3 charged point ]|

-1.5 -1 -0.5 0
log,, 8

0.5

0.8

0.7

0.6

0.5

0.4

P(g)

0.3

0.2

0.1

FIG. 12. Microfield distributions produced at a charged test par-
ticle for the coupling parametét= 10, for the values of the screen- FIG. 14. Comparison of the probability density distributions
ing parameteis, marked near the curves. MC resulsolid lines P(B) at a neutraldashed linesand chargedsolid lineg point at
are compared with the analytic approximation given in Appendix CI'=1.5 and for four values dé. Dotted lines show the approxima-

(dotted lines.

tions in Appendixes B and C.
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in the logarithmic scalgFig. 13. When B8 is moderately interacting via Coulomb potential, in various regimes from
large andI'>1, the decrease is approximately Gaussianweak to strong coupling. The MC and APEX methods of
e T B2 calculation yield similar distributions, in agreement with pre-

The rich variety of the shapes &f(3) (depending ors viou;ly known 'resqlts[16]. Self—qonsistent elgmentary—
andT") complicates significantly the construction of a fitting function approximations for the field probability density
formula. In this case, a unified fit t@ and P (like those ~ P(B) and its cumulative distributio®(3) are constructed
presented in the previous sectidmgould become too cum- N the two cases of a neutral gnd charged point, for a Cou-
bersome. Therefore, we have chosen to construct an analytigmbP coupling parameter varying from 0 to 16; o
approximation to the functio® only. Whenever necessary, Furthermore, MC calculations of the microfield d|§tr|bu—
Q can be found by numerical integratipgq. (15)]. tion ha\{e been performeq for _the scrgeneq Coulomb interac-

Our approximate formula is presented in Appendix C. Itstion, using the model of ions interacting via the Debye-like
quality is revealed by Figs. 11—14, where the fit is comparedYukawa effective potential, with an effective screening
with results of the MC simulations. The typical accuracy of length as a second independent parameter. The dimensionless
several percent &< 1.5 is expected to be sufficient for most Screening paramets{Eq.(8)] varies from 0 to 3. The whole
applications. Ats>1.5 the accuracy deteriorates, andsat Set of numerical results foP(B) at various values of the
>2 the asymptotic behavior at larggis not reproduced, as coupling and screening parameters is approximated by ana-

one can see from the logarithmic plofSig. 13. At such  IYtic expressions. _ _
strong screening, the fit still may be used for evaluation of 1he obtained results can be used in theoretical models of

P(B) not too far fromB,,. Indeed, on the linear scalfigs. optical spectra and equations of state of Coulomb plasmas.
12 and 14 the difference between the fit and the MC results
appears to be small even st 3. ACKNOWLEDGMENTS

Figure 14 allows one to compare the screening effects in - A p thanks V. S. Filinov for useful discussion. The work

the two cases of a neutral and charged test particle. Since of A P, has been partially supported by RFBR Grant No.
is greater than unity, the difference betwe®() functions  99-02-18099.

in the two cases is large at=0.05 (i.e., for a nearly Cou-
lomb potentia), in agreement with Sec. Il A. With the in-  APPENDIX A: HIGH-FIELD ASYMPTOTIC EXPRESSION

crease ok, however, the difference becomes smaller near the FOR THE MICROFIELD DISTRIBUTION
peak of P(B). The positions of the peaks for a neutral and _ ) ) o
charged points almost coincidesat 1, and the difference in _ In this appendix, we outline the derivation of the strong-

their heights is caused by the fact that, in the case of a neutrfigld asymptotic limit of Eq.(9). For brevity, we adopt the
point, P(3) decreases much more slowly at large and ~ convention that all lengths and radius vectors are measured

therefore the region o> B, gives a larger contribution to N units of the ion-sphere radis _

the normalization integral, than it does in the case of a \We take advantage of the fact that, for Coulomb interac-
charged point. tions, h|gh-f|eld contributions are prodU(_:ed by nearest par-
ticles. This well-known result has been investigated in Ref.
[13]. We assuméi) that the microfield at,=0 is dominated

by the contribution of the nearest-neighbor ion located, at

We have calculated microfield distributions at neutral andand (ii) that only the potential of this ion contributes to the

charged test particles in a one-component plasma of ionpotential energy. Then E@9) can be approximated by

IV. SUMMARY

fdrlf drz---f drye VIS B—Vou(ry)]
Q ry>rq IN>Te

P(B)~Pad B) =477 (A1)
f drlj dr2~-f drye o0
Q ro>rq rN>Te
|
Here, () is the total volume of the system, ang(r) 3T
=V(r)a/(Ze)? is the reduced potential, so thdtv(r) fﬂe v B—Vu(r)]dr
=V(r)/kgT. In our units,Q=3=7N. P.dB)= 2 (A2)
Taking into account thatfodr=Q, fr2>r1dr2=Q(1 erZe—Fv(r)dr
0

3 ; 3 N_ 13 ;
—r3/N), and limy_..(1—r{/N)"=e™"1, we obtain
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The coordinate transformatian=Vu (|r|)=B(r)r/r with ag-ay. The latter parameters, in turn, can be approximated as

the Jacobia=(r%/B?)|dr/dB| yields functions of" ands,
1 . |dr 3 975 +12%° +(59+8.1s?) (B2)
— 2| —r°=To(r) ap=— ) ,
PadB)= T aal. © (A3) ° 1+3.1x10°%° ’
B=B
with B=B(r)=|dv(r)/dr| andK = [5r2e ">~ oy, g=V0.08+T,

For a Coulomb potential (r)=1/r and 8=1/r?, so that

1.16 1. 1035« 83
B exy—T g2 g2 “77r01885 " 11033 (B3)
Pas(ﬁ)’\“ - .
2J’ IBr—SIZeXF(_FBrllz_IBr73/2)d131 0.068+ 0_03&7
0 a(s)=—F—,
(Ad) 1+0.03G
For a Yukawa potentiab(r)=e~5"/r, we have 95s
P o a=———— +1.25%, (B4)
1+6x10 3’

P(8) 1 rlexg—r3-Te Sr] (A58)
= — s a

K (2+sr+2/sr)(s/r?)e”s a=27s"+ 36y, (BS)

wherer should be determined from the equation 1.894+s
a4: ao- (86)
2+s
—sr
B=(1+sr)—-, (A5Db) This approximation has been checked for the whole range
r of the plasma parameters for which the MC simulations were
performed, i.e., at &I'<100 and G=s=<3. In the case of
and purely Coulomb potentialg=0), however, Eq(17) should
be used as more accurate.
K:J rZexg —r3—Te /r]dr. (A50)
0 APPENDIX C: APPROXIMATION TO THE PROBABILITY

DENSITY OF MICROFIELDS AT A PLASMA ION
Equation (A5) is considerably more complicated than Eq. i ) , L
(A4); it can be compared to Hooper’s formulatipta]. On In this ap_pendlx, we present an a_malytlc approximation to
the other hand, the simpler EG\) or its generalization Eq. _the probability density?(B) of electric microfield at an ion
(14) can be sufficiently accurate for most applications. Thisin @0 electron-screened Coulomb plasma.
has been verified by comparing with MC restj2€,34 and AteveryI' ands, we write

is illustrated in Fig. 2. g _p g2
P(B)~ =—|Ae #"+Be "+ (C1)
APPENDIX B: APPROXIMATION TO THE PROBABILITY SN

FUNCTION OF MICROFIELDS AT A NEUTRAL
POINT where Sy is the normalization constant. For the latter con-

stant, we have

1+c B2’

In this appendix, we present a fitting formula to the prob-
ability function Q(B) (15) for a neutral point in a plasma
with Coulomb coupling and screening. s :AF(?’/Q) +BF(3/7) CTOSE(OT®), (G2

At every pair of[" ands values, we derive a Padgproxi- N aade yb3” '
mation to the microfield probability function

whereI'(3/«) andI'(3/y) are the Gamma-function values
agB°—2 p¥%+ b that are easily calculate@.g., Ref[36]), and

)= . (B
QP a;ta B+asf’+a,p— g%+ p° 9
© xe V
Fly)=| ———pdx (C3
This expression ensures that, when its derivative is taken, the v 0 1+yx*?

limits P(B)=B? at B—0 andP(B)~1.58"°? at B—= are
reproduced. At arbitraryd, an agreement with MC results is For the latter integral, we have constructed an approxima-
provided by an appropriate choice of the fitting parametersion,
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41 1 A;=0.59+ 254G*+ 3514, (C11a
Fy)~|1+ = \/§y1’9 [%+ 0.849y*3+3.2y"?
A 0.55+ 10595+ 2545 (c11h
_1 = ,
+2.43y2B1y7 (c4) 2 1+20s°5

A;=2.17x10"3s°, c11
Expression(C4) fits the integral(C3) within 0.8%. This is 3 (Cl19

sufficient for evaluation oQ(8) andP(8) in most applica- _ n 35
tions. The accuracy of EqC4) may be insufficient, how- As=14.8[1+1157], (G119

ever, if the values of1—Q(B)] at 8> 3,, are of interest. In a—1 15+ 2518 (C12
this case, the normalization constant can be evaluated nu- o '
merically according to EqQSC2) and(C3). _ 3

Equation(C1) ensures thal(3) = 82 at 83— 0. Moreover, =01+ 1.1(1+0.145%), (C133
it also ensures the correct limiting behavior @&t ~, Eq. 54 11
(14), with ' =T", provided thatr and+y are both greater than a, i i (C13b

= > + ,
0.5. With the choice of parameters presented below, this is 1+20s°  1+148°%

the case at &s=<2.3(anyI"), which covers the whole range

of values typically encountered in stellar and laboratory B,=0.386+ 300s%+ 1.1s°°, (Cl4a
dense plasmas.
We have parametrizel, a, «, B, b, andy in Eq.(C1) as B,=0.038+0.7%%", (C14b
functions ofl", having the same form at arsy
L+ AT 5 3.7x10 3s>° (€149
+ =,
A=A —— 2 (C5) ¥ 1+4x10°3°
1+ A2+ AT
=(1+0.546>%/(1+0.
a=ag+ T2, (6 by=(1+0.54°°)/(1+0.07%), (C1H
=0.1+1.141+0.174>9), C16
a,+2 azx/f Y1 K ) ( a
a=——""=, (C7
1+ap\T 5.4 1.1 166
= —+ ,
B, 72T 12185 14198016
B BT B €8
0.097 (17
_ c= .
b= b0+F/4, (Cg) 1+ 21(32.5qu _ 1'$l.5)
nt 1-57’2\/F c10 The high powers of in some of these equations effectively
1+ yNT (C10 describe the strongdependence of the shape of the function
P(B) ats=1.
Then the parameters of these expressidqs, By, a9, bg, As noted in Sec. Il B 2, this approximation is valid at
aq, ay, v1, andy,) and the parametar of Eq. (C1) have I'=100 ands<2, but it can be also used ax=<3, pro-
been approximated by analytic functionssf vided thatp is not larger than= 10ﬁ°mh.
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