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Electric microfield distributions in electron-ion plasmas
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The low-frequency electric microfield distribution in a Coulomb plasma is calculated for various plasma
parameters, from weak to strong Coulomb coupling and from zero to strong electron screening. Two methods
of numerical calculations are employed: the adjustable-parameter exponential approximation and the Monte
Carlo simulation. The results are represented by analytic fitting formulas suitable for applications.
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I. INTRODUCTION

Because of the Stark effect, stochastic electric microfie
influence optical and thermodynamic properties of a plas
First, they affect the profiles of spectral lines and effectiv
lower photoionization thresholds of atoms and ions i
mersed in a plasma@1,2#. A comparison of experimental an
theoretical widths and shapes of the Stark-broadened spe
lines is widely used for plasma diagnostics~e.g., Refs.@3,4#!.
Second, in some theoretical models of the plasma equa
of state~e.g., Refs.@5,6#!, the microfield distribution is used
in order to calculate occupation numbers of the bound s
cies ~although such a calculation is not free from princip
difficulties, as discussed in Ref.@7#!. It was shown recently
@6# that a more accurate description of the microfields ent
a considerable improvement of the equation-of-state mo

In many cases, the microfield perturbation can be trea
as quasistationary. Then the problem is reduced to dete
nation of the probability distribution of thelow-frequency
component of perturbing electric fields~e.g., Ref.@8#!, asso-
ciated with a stochastic distribution of perturbing ion
whereas the electrons can be assumed to adjust inst
neously to a configuration of the ions. The low-frequen
microfields are appropriate to use in the equation-of-s
models@6# and in calculation of spectroscopic line profile
for those radiative transitions whose frequency does not
ceed the typical frequency of microfields produced by th
mal fluctuations of the electron density. For example, Ste´
and Jacquemot@9# used the model microfield method to an
lyze the line shapes and line dissolution in hydrogen plas
spectra.

Holtsmark @10# has derived the microfield distributio
function assuming that the ions are not correlated and
electron screening is negligible. This assumption is justifi
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for very hot or rarefied plasmas, for which the Coulom
coupling parameter

G5
~Ze!2

akBT
'

1.253104 K

T
n20

1/3Z5/3 ~1!

is close to zero. Here,Ze is the ion charge,T is the tempera-
ture,kB is the Boltzmann’s constant,a5(4pni /3)21/3 is the
ion-sphere radius,ni is the ion number density, andn20 is the
electron number density (ne5Zni) in units of 1020 cm23. As
we demonstrate below, the Holtsmark approximation is in
curate already atG;0.1. In modern plasma experiments,G
may approach unity, whereas in stellar matter it can be m
larger. In these cases, correlations of plasma particles sh
not be neglected.

Various approximations were developed in the past in
der to take the ion correlations into account. IfG&1, one
may use the methods of Baranger and Mozer@11# or Hooper
@12,13# based on a cluster expansion in powers of dens
The electron screening is usually described by a Debye-
~Yukawa! effective potential, introduced in the context o
microfield distributions by Hoffman and Theimer@14#. In the
limit of extremely strong coupling,G@10, and without
screening, the harmonic oscillator model by Mayer@15# is
applicable, in which every ion is assumed to oscillate ind
pendently of the others around its equilibrium position at
ion-sphere center.

The first theory capable to provide reliable numerical
sults for strongly coupled plasmas with electron screen
proved to be the adjustable-parameter exponential appr
mation ~APEX!, based on a special parametrization of t
electric microfieldE produced on a selected test partic
~neutral or charged ‘‘radiator’’ of chargeZr) which under-
goes the influence of charged plasma particles~‘‘perturbers’’
of speciess and of chargeZs). This method has been de
veloped for Coulomb systems@16# and adapted for screene
Coulomb systems and ion mixtures@8,17#. It involves non-
interacting quasiparticle representation of the electr
screened ions, designed to yield the correct second mom
of the microfield distribution@18#
©2002 The American Physical Society12-1
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^E•E&5
4pnikBT

Zr
ks

2(
s

csZsE
0

`

dr re2ksrgs~r !, ~2!

wheregs(r ) and cs denote the radial distribution functio
~RDF! and the relative abundance of speciess, respectively,
and whereks is an effective electron-screening wave numb
After introducing the effective single-particle field in th
form

es* 5Zse
~11asr !

r 2 e2asr , ~3!

the adjustable parameters$as% are chosen to satisfy the con
dition

4pE e2PAPEX~e!de5^E•E&. ~4!

The expression on the left-hand side of this equation cont
the parameters$as% to be determined, whereas the righ
hand side can be evaluated using Eq.~2!, if the RDF is
known. The RDF thus provides a scheme for evaluating
APEX microfield distribution and is a central ingredie
whose accuracy determines the one of the APEX microfi
results. In our implementation of the APEX technique,
have used the hypernetted-chain RDF calculations@18–20#.

On the other hand, with the advent of powerful comput
it is now possible to calculate the microfield distributio
from Monte Carlo~MC! or molecular-dynamics simulation
of plasmas with the minimum of simplifying assumptio
~e.g., Refs.@21–25#!. Moreover, the latter methods allow on
to study the effects of microfield nonuniformity@26,27# and
to simulate high-frequency microfield distributions
electron-ion plasmas~e.g., Ref.@28#!. The MC technique is
based on a numerical simulation of space configurations
system of particles, whereas the molecular-dynamics te
nique traces the time evolution of the system. For the lo
frequency microfield, dynamical effects are unimportant, a
the two methods yield the same results, as demonstra
e.g., in Ref.@27#. Therefore, it is sufficient to use the MC
method in this case.

With these powerful tools, the microfield distribution ca
be calculated now for any practically important combinati
of plasma parameters. However, plasma spectroscopy
equation-of-state models require knowledge of this distri
tion at many different points or even in continuous areas
the plasma parameter space. In this case, either exten
numerical tables or approximate analytic expressions
necessary.

We present results of calculations of the low-frequen
microfield distribution function at a neutral and charg
plasma point for various values ofG ranging from 0 to 100
and for various values of an effective electron-screen
length. We consider plasmas composed of a single specie
ions; in particular, in the case of a charged test particle,
charge is assumed to be equal to that of perturbers. The
culations are performed mainly by the MC method; for co
parison we have done also APEX calculations. We a
present analytic formulas that reproduce the calculated e
03641
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tric microfield probability distributions with an accurac
comparable to small differences between the MC and AP
results.

In the following section, we describe basic assumptio
used in our calculations and write down some asympto
results. In Sec. III, we present results of numerical calcu
tions and analytic approximations for microfield distributio
produced at a neutral or charged point by ions interacting
unscreened or screened Coulomb potentials. The results
summarized in Sec. IV.

II. METHOD

A. Basic assumptions

We consider a nonrelativistic, isotropic, overall neut
plasma at the thermodynamic equilibrium. The ions are
sumed to be classical and pointlike. The electric field crea
at a point r by an ion placed atr i equals Ẽ(r i2r)5
2(Ze)21

“V(ur i2ru), whereV(r ) is an effective pair poten-
tial. This potential is taken in the Debye-Hu¨ckel ~or Yukawa!
form,

V~r !5~Ze!2
e2ksr

r
. ~5!

In the linear approximation, a test chargeq embedded~at r
50) creates perturbation of electron number densityñe(r )
5(]ne /]m)m̃(r ), wherem̃(r )52ef(r ) is the perturbation
of the electron chemical potentialm, andf(r ) is the excess
electrostatic potential determined by the Poisson equa
¹2f(r )524p@qd3(r)2eñ(r )#. Thus in the linear~first-
order perturbation! approximation (¹214pe2]ne /
]m)f(r )524pqd3(r), which leads to the well-known
~e.g., Ref. @20#! expression for the effective electron
screening wave numberks ,

ks
254pe2

]ne

]m
5

e2

p\3 ~2me!
3/2~kBT!1/2I 21/2~x!, ~6!

whereI n(x)5*0
`xndx/(ex2x11) is the Fermi integral, and

x[m/kBT is determined from the equation

I 1/2~x!5p2\3~mekBT!23/2ne /A2. ~7!

The solution of Eq.~7! and the right-hand side of Eq.~6! are
given by accurate Pade´ approximations in Ref.@29#.

In the limits of weak or strong electron degeneracy,ks
tends to the inverse Debye length for the electrons or to
Thomas-Fermi wave number, respectively.

We adopt the conventional assumption that the potent
V(ur i2ru) are additive, which is strictly valid in the limit
ks→0. Then the electric fieldE(r) is also the sum of elemen
tary electric fieldsẼ(r i2r).

It is convenient to introduce the dimensionless fieldb and
the screening parameters,

b5~a2/Ze!E, s5a ks . ~8!

Also, b̃5(a2/Ze)Ẽ.
2-2
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ELECTRIC MICROFIELD DISTRIBUTIONS IN . . . PHYSICAL REVIEW E65 036412
In the canonical thermodynamic ensemble of (N11) par-
ticles, the probability density of the modulus of the field,b
5ub(r0)u, can be written as

P~b!5
4pb2

ZN11
E •••E dFb~r0!2(

i 51

N

b̃~r i2r0!G
3exp@2W~r0 ,r1 , . . . ,rN!/kBT#dr1•••drN .

~9!

Here,

ZN115E •••E exp@2W~r0 ,r1 , . . . ,rN!/kBT#dr1•••drN

is the canonical partition function andW is the
potential energy of the configuration:W(r0 ,r1 , . . . ,rN)
5 1

2 ( iÞ jV(ur i2r j u)1VB , whereVB is the potential energy
of the background of electrons. Our goal is to calculate
function P(b) in the thermodynamic limitN→`. In the
following paragraph, we shall discuss how to perform t
calculation.

B. Monte Carlo technique

In the numerical MC calculations, the coordinates ofN
11) particles~one test particle andN perturbers! are chosen
in a cubic box of side lengthL such that (N11)/L35ni . In
order to include the effect of distant particles, the box
replicated by its ‘‘images’’ filling the space with the stepL.
The sum of the interaction potentials with all ion images
calculated using the Ewald technique@30# and, in order to
ensure isotropy, the averaging over the complete solid a
is applied. As shown in Ref.@21#, a result of this procedure i
equivalent to the replacement of the potential~5! in the cube
by an effective potentialVL ,

VL~r !

~Ze!2 5
e2ksr

r
2

CM8

L

sinh~ksr !

ksr
1

4p

ks
2L3Fsinh~ksr !

ksr
21G ,

~10!

whereCM8 is a numerical constant that tends to the Mad
lung’s constant~e.g., Ref.@31#! in the limit ks→0. The total
potential energyW is obtained by the summation ofVL over
all pairs of particles.

During the MC run, an ion within the box and its dis
placement are chosen randomly. If the displacement br
the ion outside the box, the ion is replaced by its image
strongly correlated plasmas, the displacement is limited b
maximum distance smaller thanL, in order to avoid calcula-
tion of the energy for highly improbable configurations. Fi
104 ion configurations are discarded in order to erase tra
of the starting configuration. The state of equilibrium
searched by the Metropolis algorithm: the energy differe
DW is calculated between the consecutive configuratio
and the new configuration is accepted definitely if this d
ference is negative and accepted with probabilitye2DW/kBT,
if DW is positive. The latter condition allows the system
escape from trapping in a local energy minimum. When
system approaches equilibrium,W ceases to change appr
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ciably. Then all equilibrium quantities depending only o
particle positions~electric microfield, pair correlation func
tion, etc.! can be calculated. In all our simulations, we try
get the maximum precision by minimizing the statistical e
rors. So we considered large boxes of particles~betweenN
5600 andN5800) and, for each state (G,s), 13107 to 6
3107 configurations were generated after equilibrium. Th
number of samples is large enough for the precision nee
for all microfield distribution results discussed in this pap

C. Asymptotic and approximate expressions

The described MC sampling procedure does not dire
provide the probability density for extremely weak or stro
fields, which are given by rare configurations. It is therefo
useful to know asymptotic behavior ofP(b) in the limits
b→0 andb→`.

In the first case, the methods of Baranger and Mozer@11#
and APEX@8,16# show a parabolic dependence ofP(b) near
the origin. This behavior is also visible on MC results. Thu
we assume thatP(b)/b2 is constant near the origin.

In the case of very strong fields, exact analytic results
available for the unscreened Coulomb potential only. T
Holtsmark distribution, valid atG→0 for anyb, reads@10#

PH~b!5
2b

p E
0

`

x exp~2x3/2!sin~bx!dx. ~11!

At b→`, this distribution has the asymptoteP(b)
;1.496b25/2, which is close to the asymptote of the neare
neighbor~NN! field distribution@32#

PNN~b!51.5b25/2exp~2b23/2!. ~12!

In the opposite limit of extremely strong correlations (G
→`), the Mayer model@15# yields ~for the charged tes
particle!

PM~b!5A2/pG3/2b2 exp~2Gb2/2!. ~13!

Figure 1 illustrates the differences between vario
asymptotic theories~NN, Mayer model! and numerical re-
sults at finiteG. Compared to the Holtsmark distributio
~11!, the most probable field values are shifted considera
to lower b, the shift being much larger at a charged poi
The NN approximation~12! correctly describes the case o
largeb for the neutral point but fails for the charged point
at smallb. The Mayer distribution~13! fails to describe the
high-field tail of P(b) but provides the most probable fiel
which, at thisG, is offset by 20% only. At contrast, the
APEX and MC results are in close agreement forb,2.

The Mayer model fails in the strong-field limit, because
this case one should consider a test ion that lies at a v
short distancer}b21/2 from the nearest perturbing ion. The
the geometrical and Boltzmann factors giveP(b)
;b25/2e2Gb1/2

at b→`. In Appendix A, we present deriva
tion of a more accurate asymptotic expression~A4!, which
was previously given in Refs.@24,33# for the case of the
Coulomb potential without screening. A generalization of E
~A4! provides an accurate functional form of the asympto
behavior ofP(b) at largeb @24,34#,

P~b!;K̃ b25/2exp~2G̃b1/22b23/2!, ~14!
2-3
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POTEKHIN, CHABRIER, AND GILLES PHYSICAL REVIEW E65 036412
whereK̃ andG̃ are adjustable parameters. In practice,G̃ is a
free parameter, whereasK̃ can be determined from the no
malization constraint. An example is given in Fig. 2. In th

example, the value ofG̃ is close to the exactG, but this is not
the general case. However, as shown in Refs.@24,34#, for any

FIG. 1. Microfield distributions produced by ions interacting v
the unscreened Coulomb potential in a plasma atG57 at a neutral
and charged point in the plasma. MC~solid lines! and APEX~short-
dashed curve! numerical results are compared with analytic a
proximations by Holtsmark~long dashes!, Mayer, and neares
neighbor~dot-dashed lines!.

FIG. 2. Comparison, forG53 ands50.75, of probability den-
sity distributionsP(b) at a charged point, calculated by differe
methods: Monte Carlo~solid line!, APEX ~dotted line!, and the
asymptotic expression~14! ~dashed line!. Coefficients of the
asymptotic expression have been fitted on MC points above

cutoff valueb55, G̃53.06, andK̃531.011. The asymptotic ex
pression is a good representation of the high-field tail ofP(b) since
it avoids the oscillations shown by the two other methods~MC,
numerical statistical noise; APEX, Fourier transform oscillations!.
03641
simulation of practical interest, it is always possible to fi

appropriateG̃ andK̃ to fit the high-field tail of the microfield
distribution.

III. RESULTS

A. Coulomb potential

In this section, we present results of MC and APEX c
culations and analytic approximations for the microfield d
tribution brought about by the one-component plasma i
interacting via the Coulomb potential without screening.
this case, the probability densityP depends onb andG.

1. Neutral point

First, we consider the distribution of electric microfield
applied to a neutral test particle embedded in a plasma. If
plasma is weakly coupled,P(b) is given by the Holtsmark
formula ~11!. In theoretical models~e.g., @5,6#! one is often
interested in the cumulative probability distribution defin
as

Q~b!5E
0

b

P~b8!db8. ~15!

For the Holtsmark distribution,QH(b)'120.997b23/2 at
b→`. For arbitraryb, accurate rational-function approx
mations to PH(b) and QH(b) have been constructed b
Hummer@35#.

With increasingG, the field distribution becomes na
rower, as shown in Fig. 3. The decrease of the most prob
valuebm of the dimensionless fieldb, which corresponds to
the maximum ofP(b), can be described by a simple a
proximate formula

bm
neu'

1.60810.24AG

110.77AG
. ~16!

The asymptotic behavior ofP(b) remains power law, as in
the case without Coulomb coupling. This facilitates constr
tion of self-consistent rational approximations toQ(b) and
P(b). We have calculatedP(b) for variousG from 0 to 10
by the APEX method and forG up to 100 by the MC tech-
nique. Our fit toQ(b) reads

Q~b!5
q0b321.33b9/21b6

q11q2b21q3b32
1

3
b9/21b6

, ~17!

whereqn5an(11bnAG)2gn, and the parametersan , bn ,
andgn are given in Table I.P(b) is obtained from Eq.~17!
by elementary differentiation. AtG50, this differentiation
reproducesPH(b) at anyb with a maximum fractional error
of 0.24%. At finiteG, the difference between the fit and th
MC data increases up to several percent, remaining, h
ever, not larger than the difference between the MC a
APEX results, as one can see in Fig. 3.

-

e
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2. Charged point

For the charged test particle, the asymptotic behavio
P(b) at largeb is qualitatively different in the cases of zer
and nonzeroG. WhenGÞ0, the power law decrease ofP(b)
is replaced by an exponential. At moderateb and largeG,
P(b) is approximately described by the Mayer distributi
~13!. The cumulative function of this distribution is

QM~b,G!5erf~bAG/2!2A2G

p
b e2G b2/2, ~18!

which is easily calculated using, e.g., the highly accur
rational approximation toex2

erfc(x) in Ref. @36#. The most
probable value of the microfield provided by this distributi
is bm

M5A2/G. With increasingG, bm for a charged point
decreases faster thanbm

neu given by Eq.~16!. The MC results
for bm are approximately described by the following mod
fication of bm

M :

FIG. 3. Microfield distributions produced at a neutral point
ions interacting via the Coulomb potential, forG50.0533, 1, 10,
and 100. Numerical results~MC, solid lines; APEX, short-dashe
lines! are compared with analytic approximation~17! ~dotted
curves!. The long-dashed curve reproduces the Holtsmark distr
tion ~11!.

TABLE I. Parameters of Eq.~17!.

n 0 1 2 3

an 14.600 103.20 11.127 16.17
bn 0.41 1.54 0.58 0.60
gn 0.707 1.64 0.572 0.915
03641
f

e

bm
ch5A2/Geff, Geff'0.7741G1/41G. ~19!

The microfield probability density at various values ofG
is shown in Fig. 4. The exponential decrease ofP(b) at large
G is more easily seen in the logarithmic scale~Fig. 5!. Ac-
cording to Eq.~14!, the exponent at largeb is proportional to
Ab, and not tob2 as in Eqs.~13! and~18!. Nevertheless, it is
still possible to construct a self-consistent analytic appro
mation toQ(b) and P(b) analogous to Eq.~17!. Since the
asymptotes are qualitatively different in different couplin
regimes, this approximation is more complicated,

Q~b!5
Q0~b!10.873AG Q2M ~b,Geff!

110.873AG
, ~20!

where

-

FIG. 4. Microfield distributions produced at a charged test p
ticle by ions interacting via the Coulomb potential at variousG
from 0.1 to 100. MC results~solid lines! are compared with the
analytic approximation~20! ~dotted curves!. The Holtsmark distri-
bution (G50) is also plotted~dashed line!.

FIG. 5. Same as in Fig. 4 but on the logarithmic scale.
2-5
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Q0~b!5
q b3 exp~2G8b1/2!1b6

@2.25p q~11G0.6!22.75115.3b211.238q b31b9/2#exp~2G8b1/2!1b6
, ~21!

q59.1912.178G1.64, and G85G/~110.19G0.627!.
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At G50, ]Q0 /]b reproducesPH(b) within 1%. The accu-
racy deteriorates atG'0.1 but improves again at higherG:
in Figs. 4 and 5, differences between the fit and MC res
are barely visible atG50.5, 3, 50, and 100.

B. Effective screened potential

In this section, we consider microfield distribution in a
electron-screened Coulomb plasma. Assuming that the
interact via the effective potential~5!, we have performed
MC simulations ofP(b) for various values of the screenin
parameter froms50.05 tos53.0 and the Coulomb coupling
parameter fromG50.1 to G5100. In accord with an intui-
tive expectation, the MC simulations show that the typi
fields applied to a test particle are reduced when the elec
screening is taken into account. In this case, the probab
density P and its cumulative functionQ depend on three
dimensionless arguments:b, G, and s. Naturally, analytic
approximations in this three-dimensional space become c
plex and less accurate than at fixeds50; nevertheless we
have attempted to construct unified formulas for evaluat
of P(b) with an accuracy that is sufficient for most applic
tions; the results are presented below.

1. Neutral point

The most probable field strength applied to a neutral
particle, evaluated by the MC method, can be parametr
as

bm
neu~G,s!'bm

(0)~s!
110.15AG

110.77~11s!e21.5sAG
, ~22!

where

bm
(0)~s!'@0.62210.25s es#21. ~23!

Equation~22! extends Eq.~16! to the case wheresÞ0. It is
valid for the whole considered range of plasma paramet
G<100 ands<3.

The reduction of the typical microfield strength applied
a charged test particle, when the screening is taken into
count, is illustrated in Fig. 6, where the dashed lines co
spond to the case of a neutral test particle, which we cons
in this section. At a constantG, bm is a monotonically de-
creasing function ofs. The dependence ofbm on G is less
obvious. At small values ofs, bm decreases monotonicall
with increasingG. However, the opposite is observed whens
is large: in this case,bm increases with growingG. This
implies that the most probable field strength depends os
stronger at smallG and weaker at largeG.
03641
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The modification of the probability density profile wit
variation of the plasma parametersG ands is shown in Figs.
7–10. In the most important range of the coupling parame
G&10, the dependence ofP(b) on G becomes slow, as the
screening becomes sufficiently strong. For example, in Fig
we observe a significant modification ofP(b) at s50.05,
when G increases from 0.1 to 5, whereasP(b) is only
slightly modified with the same increase ofG, if s51.5.

On the other hand, the profile ofP(b) strongly depends
on the value of the screening parameters ~Fig. 8!, especially
if s*1. In this case, the most probable field is reduced dr
tically; simultaneously, the distribution acquires a lon
‘‘tail,’’ which shows that the values ofb@bm occur more
often than in thes50 case. Figure 9, which presents th
same dependences on the logarithmic scale, clearly rev
the two limiting power laws,P}b2 andb25/2 at small and
largeb values, respectively, in agreement with Sec. II C. W
see that these limits are approached considerably m
slowly in the case of strong screening.

A comparison of Figs. 9 and 10 shows thatP is less sen-
sitive to s, when G is large, in accord with the aforemen
tioned property ofbm . Nevertheless, even atG@1, the sen-
sitivity of P with respect tos remains essential.

It is possible to construct a fitting formula to the probab
ity function Q(b) analogous to Eq.~17!, taking into account
the screening. Such parametric approximation is given in A

FIG. 6. ‘‘Most probable’’ field strength@normalized according to
Eq. ~8!# as a function of the Coulomb coupling parameterG at four
values of the screening parameters. Dashed lines, neutral point
solid lines, charged point.
2-6
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pendix B and is shown in Figs. 7–10 by dotted lines. A
though less accurate than the fits presented in Sec. III A,
approximation reproduces well the numerical results
tained by the MC simulation.

2. Charged point

Consider now the microfield distribution created
plasma ions at a point where one of these ions is plac

FIG. 7. Microfield distributions produced at a neutral point in
plasma by ions interacting via the screened Coulomb potentia
two values of the screening parameters ~dashed lines,s50.05;
solid lines,s51.5) and two values of the Coulomb coupling para
eterG. The analytic approximation~Appendix B! is shown by dot-
ted lines.

FIG. 8. Microfield distributions produced at a neutral point f
the coupling parameterG50.5, for seven values of the screenin
parameters marked near the curves. MC results~solid lines! are
compared with the analytic approximation~dotted lines!.
03641
is
-

d,

assuming that the Coulomb interaction is screened accor
to Eq. ~5!. As well as in the case of a neutral point, th
screening lowers typical microfield values. Dependence
the most probable fieldbm on s andG can be approximated
by a simple expression

bm
ch~G,s!5bm

(0)~s!F11
G1/41G

0.77410.54s esG21/2

, ~24!

wherebm
(0)(s) is given by Eq.~23!. At s50, Eq.~24! repro-

duces Eq.~19!. The dependence ofbm on G at various values
of s is plotted in Fig. 6 by solid lines. Unlike the case of
neutral point considered in the preceding section,bm

ch de-
creases monotonically with increasingG at any given value
of s.

or
FIG. 9. Same as in Fig. 8 on the logarithmic scale.

FIG. 10. Same as in Fig. 9 but forG550.
2-7
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The modification of the probability densityP(b) with
increasings or G is illustrated by Figs. 11–14. The depe
dence on the coupling parameterG remains qualitatively the
same as without screening: with the increase ofG, the typical
field strengths become lower, and the distributionP(b) be-
comes narrower. The increase ofs also shifts the peak ofP to

FIG. 11. Microfield distributions produced at a charged test p
ticle by ions interacting via the unscreened~dashed lines! and
screened Coulomb potential~solid lines, the screening parameters
50.7) for G50.1, 1, and 5. The analytic approximation given
Appendix C is also shown for all cases~dotted curves!.

FIG. 12. Microfield distributions produced at a charged test p
ticle for the coupling parameterG510, for the values of the screen
ing parameters, marked near the curves. MC results~solid lines!
are compared with the analytic approximation given in Appendix
~dotted lines!.
03641
smallerb. At s.1, however, the latter shift is accompanie
by a striking modification of the shape of the functionP: a
fast growth at smallb is followed by a slow, gradual de
crease atb.bm .

As in the case of the Coulomb potential, the limiting b
havior of P(b) at b@bm changes from power law atG50
to the exponential decrease}b25/2e2GAb at b→`. This lim-
iting law is reached very slowly, ifs is large, as clearly seen

r-

r-

FIG. 13. Comparison of distributionsP(b) at two values ofG
~solid lines,G50.3; dashed lines,G510) and seven values ofs
(s50.05, 0.50, 1.04, 1.5, 2.0, 2.5, and 3.0, from right to left! on the
logarithmic scale. Dotted lines show the approximation~Appendix
C!.

FIG. 14. Comparison of the probability density distributio
P(b) at a neutral~dashed lines! and charged~solid lines! point at
G51.5 and for four values ofs. Dotted lines show the approxima
tions in Appendixes B and C.
2-8
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in the logarithmic scale~Fig. 13!. When b is moderately
large andG@1, the decrease is approximately Gaussi
}e2G b2/2.

The rich variety of the shapes ofP(b) ~depending ons
andG) complicates significantly the construction of a fittin
formula. In this case, a unified fit toQ and P ~like those
presented in the previous sections! would become too cum
bersome. Therefore, we have chosen to construct an ana
approximation to the functionP only. Whenever necessar
Q can be found by numerical integration@Eq. ~15!#.

Our approximate formula is presented in Appendix C.
quality is revealed by Figs. 11–14, where the fit is compa
with results of the MC simulations. The typical accuracy
several percent ats&1.5 is expected to be sufficient for mo
applications. Ats.1.5 the accuracy deteriorates, and as
.2 the asymptotic behavior at largeb is not reproduced, as
one can see from the logarithmic plots~Fig. 13!. At such
strong screening, the fit still may be used for evaluation
P(b) not too far frombm . Indeed, on the linear scale~Figs.
12 and 14! the difference between the fit and the MC resu
appears to be small even ats53.

Figure 14 allows one to compare the screening effect
the two cases of a neutral and charged test particle. SincG
is greater than unity, the difference betweenP(b) functions
in the two cases is large ats50.05 ~i.e., for a nearly Cou-
lomb potential!, in agreement with Sec. III A. With the in
crease ofs, however, the difference becomes smaller near
peak ofP(b). The positions of the peaks for a neutral a
charged points almost coincide ats.1, and the difference in
their heights is caused by the fact that, in the case of a ne
point, P(b) decreases much more slowly at largeb, and
therefore the region ofb@bm gives a larger contribution to
the normalization integral, than it does in the case o
charged point.

IV. SUMMARY

We have calculated microfield distributions at neutral a
charged test particles in a one-component plasma of i
03641
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interacting via Coulomb potential, in various regimes fro
weak to strong coupling. The MC and APEX methods
calculation yield similar distributions, in agreement with pr
viously known results @16#. Self-consistent elementary
function approximations for the field probability densi
P(b) and its cumulative distributionQ(b) are constructed
in the two cases of a neutral and charged point, for a C
lomb coupling parameterG varying from 0 to 102.

Furthermore, MC calculations of the microfield distrib
tion have been performed for the screened Coulomb inte
tion, using the model of ions interacting via the Debye-li
~Yukawa! effective potential, with an effective screenin
length as a second independent parameter. The dimensio
screening parameters @Eq. ~8!# varies from 0 to 3. The whole
set of numerical results forP(b) at various values of the
coupling and screening parameters is approximated by
lytic expressions.

The obtained results can be used in theoretical model
optical spectra and equations of state of Coulomb plasm

ACKNOWLEDGMENTS

A.P. thanks V. S. Filinov for useful discussion. The wo
of A.P. has been partially supported by RFBR Grant N
99-02-18099.

APPENDIX A: HIGH-FIELD ASYMPTOTIC EXPRESSION
FOR THE MICROFIELD DISTRIBUTION

In this appendix, we outline the derivation of the stron
field asymptotic limit of Eq.~9!. For brevity, we adopt the
convention that all lengths and radius vectors are meas
in units of the ion-sphere radiusa.

We take advantage of the fact that, for Coulomb inter
tions, high-field contributions are produced by nearest p
ticles. This well-known result has been investigated in R
@13#. We assume~i! that the microfield atr050 is dominated
by the contribution of the nearest-neighbor ion located atr1,
and ~ii ! that only the potential of this ion contributes to th
potential energy. Then Eq.~9! can be approximated by
P~b!;Pas~b!54pb2

E
V

dr1E
r 2.r 1

dr2•••E
r N.r 1

drNe2Gv(r 1)d@b2“v~r 1!#

E
V

dr1E
r 2.r 1

dr2•••E
r N.r 1

drNe2Gv(r 1)

. ~A1!
Here, V is the total volume of the system, andv(r )
5V(r )a/(Ze)2 is the reduced potential, so thatGv(r )
5V(r )/kBT. In our units,V5 4

3 pN.
Taking into account that*Vdr5V, * r 2.r 1

dr25V(1

2r 1
3/N), and limN→`(12r 1

3/N)N5e2r 1
3
, we obtain
2

Pas~b!5b2

E
V

e2r 32Gv(r )d@b2“v~r !#dr

E
0

`

r 2e2Gv(r )dr

. ~A2!
-9
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The coordinate transformationu5“v(uru)5b̃(r )r/r with
the JacobianJ5(r 2/b̃2)udr/db̃u yields

Pas~b!5
1

K
r 2U dr

db̃
U

b̃5b

e2r 32Gv(r ) ~A3!

with b5b̃(r )5udv(r )/dru andK5*0
`r 2e2r 32Gv(r )dr.

For a Coulomb potential,v(r )51/r andb51/r 2, so that

Pas~b!;
b25/2exp~2Gb1/22b23/2!

2E
0

`

b825/2exp~2Gb81/22b823/2!db8

.

~A4!

For a Yukawa potentialv(r )5e2sr/r , we have

P~b!5
1

K

r 2 exp@2r 32Ge2sr/r #

~21sr12/sr!~s/r 2!e2sr
, ~A5a!

wherer should be determined from the equation

b5~11sr!
e2sr

r 2
, ~A5b!

and

K5E
0

`

r 2 exp@2r 32Ge2sr/r #dr. ~A5c!

Equation ~A5! is considerably more complicated than E
~A4!; it can be compared to Hooper’s formulation@13#. On
the other hand, the simpler Eq.~A4! or its generalization Eq
~14! can be sufficiently accurate for most applications. T
has been verified by comparing with MC results@24,34# and
is illustrated in Fig. 2.

APPENDIX B: APPROXIMATION TO THE PROBABILITY
FUNCTION OF MICROFIELDS AT A NEUTRAL

POINT

In this appendix, we present a fitting formula to the pro
ability function Q(b) ~15! for a neutral point in a plasma
with Coulomb coupling and screening.

At every pair ofG ands values, we derive a Pade´ approxi-
mation to the microfield probability function

Q~b!5
a0b322 b9/21b6

a11a2b1a3b21a4b32b9/21b6
. ~B1!

This expression ensures that, when its derivative is taken
limits P(b)}b2 at b→0 andP(b)'1.5b25/2 at b→` are
reproduced. At arbitraryb, an agreement with MC results i
provided by an appropriate choice of the fitting paramet
03641
.
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a0-a4. The latter parameters, in turn, can be approximated
functions ofG ands,

a05
97s211.29s7

113.131023s5
1~5918.1s2!g, ~B2!

g[A0.081G,

a15
1.16

110.188s6 F11
103ga(s)

110.33sG , ~B3!

a~s![
0.06810.038s7

110.030s7 ,

a25
95s

11631023s7
11.2s2g, ~B4!

a3527s3136g, ~B5!

a45
1.8941s

21s
a0 . ~B6!

This approximation has been checked for the whole ra
of the plasma parameters for which the MC simulations w
performed, i.e., at 0<G<100 and 0<s<3. In the case of
purely Coulomb potential (s50), however, Eq.~17! should
be used as more accurate.

APPENDIX C: APPROXIMATION TO THE PROBABILITY
DENSITY OF MICROFIELDS AT A PLASMA ION

In this appendix, we present an analytic approximation
the probability densityP(b) of electric microfield at an ion
in an electron-screened Coulomb plasma.

At every G ands, we write

P~b!'
b2

SN
FAe2aba

1Be2bbg
1

e2G b1/2

11c b9/2G , ~C1!

whereSN is the normalization constant. For the latter co
stant, we have

SN5A
G~3/a!

aa3/a
1B

G~3/g!

gb3/g
1G26F~c/G9!, ~C2!

where G(3/a) and G(3/g) are the Gamma-function value
that are easily calculated~e.g., Ref.@36#!, and

F~y![E
0

` x2e2Ax

11yx9/2dx. ~C3!

For the latter integral, we have constructed an approxim
tion,
2-10
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F~y!'S 11
4p

9A3
y1/9D F 1

240
10.849y1/313.2y5/9

12.43y2/31y7/9G21

. ~C4!

Expression~C4! fits the integral~C3! within 0.8%. This is
sufficient for evaluation ofQ(b) andP(b) in most applica-
tions. The accuracy of Eq.~C4! may be insufficient, how-
ever, if the values of@12Q(b)# at b@bm are of interest. In
this case, the normalization constant can be evaluated
merically according to Eqs.~C2! and ~C3!.

Equation~C1! ensures thatP(b)}b2 at b→0. Moreover,
it also ensures the correct limiting behavior atb→`, Eq.

~14!, with G̃5G, provided thata andg are both greater than
0.5. With the choice of parameters presented below, thi
the case at 0<s&2.3 ~anyG), which covers the whole rang
of values typically encountered in stellar and laborato
dense plasmas.

We have parametrizedA, a, a, B, b, andg in Eq. ~C1! as
functions ofG, having the same form at anys,

A5A1

11A4AG

11A2G21A3G4
, ~C5!

a5a01G/2, ~C6!

a5
a112 a2AG

11a2AG
, ~C7!

B5
B1

11B2G21B3G4 , ~C8!

b5b01G/4, ~C9!

g5
g111.5g2AG

11g2AG
. ~C10!

Then the parameters of these expressions (An , Bn , a0 , b0 ,
a1 , a2 , g1, andg2) and the parameterc of Eq. ~C1! have
been approximated by analytic functions ofs,
ct
:/

x/

03641
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A150.5912540s413s14, ~C11a!

A25
0.55110s0.512s4.5

1120s0.5
, ~C11b!

A352.1731023s5, ~C11c!

A4514.8/@11117s3.5#, ~C11d!

a051.1512s1.8, ~C12!

a150.111.1/~110.145s3!, ~C13a!

a25
5.4

1120s2 1
1.1

1114s0.35
, ~C13b!

B150.3861300s211.1s9.5, ~C14a!

B250.03810.79s0.75, ~C14b!

B35
3.731023s5.5

11431023s9
, ~C14c!

b05~110.54s2.5!/~110.07s!, ~C15!

g150.111.1/~110.174s2.5!, ~C16a!

g25
5.4

1121s1.5
1

1.1

1119s0.16
, ~C16b!

c5
0.097

11210s2.5exp~21.3s1.5!
. ~C17!

The high powers ofs in some of these equations effective
describe the strongs dependence of the shape of the functi
P(b) at s*1.

As noted in Sec. III B 2, this approximation is valid a
G<100 ands<2, but it can be also used at 2,s<3, pro-
vided thatb is not larger than'10bm
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