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Abstract. New calculations of the thermal and electrical elec-
tron conductivities are performed for a broad range of physi-
cal parameters typical for envelopes of neutron stars and cores
of white dwarfs. We consider stellar matter composed of as-
trophysically important chemical elements from H to Fe in
the density range from102–104g cm−3 up to107–1010g cm−3,
where atoms are fully ionized and electrons are strongly degen-
erate. We have used modified ion structure factors suggested
recently by Baiko et al. (1998). In the ion liquid, these mod-
ifications take into account, in an approximate way, instan-
taneous electron-band structures that reduce the electron-ion
scattering rate. In crystallized matter, the new structure factors
include multi-phonon processes important at temperatures not
very much lower than the melting temperatureTm. The trans-
port coefficients obtained differ significantly from those derived
earlier in the important temperature rangeTm/5 <∼ T <∼ 5Tm.
The results of our numerical calculations are fitted by analytical
expressions convenient for astrophysical applications.
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1. Introduction

Thermal and electrical conduction in the envelopes of neutron
stars and the cores of white dwarfs plays crucial role in many
aspects of evolution of these stars. Thermal conductivity is the
basic quantity needed for calculating the relationship between
the internal temperature of a neutron star and its effective surface
temperature; this relationship affects thermal evolution of the
neutron star and its radiation spectra (e.g., Gudmundsson et al.
1983; Page 1997; Potekhin et al. 1997, hereafter Paper I). Elec-
trical conductivity is the basic quantity used in calculations of
magnetic-field evolution in neutron star crusts (e.g., Muslimov
& Page 1996; Urpin & Konenkov 1997; Konar & Bhattacharya
1997). Thermal conductivity of degenerate matter is also an
essential ingredient for white-dwarf pulsation modelling (e.g.,
Fontaine & Brassard 1994).

For applications one should know the transport properties
of dense stellar matter where electrons are strongly degenerate
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and form nearly ideal Fermi-gas, whereas ions are partially or
fully ionized and form either a strongly coupled Coulomb liquid
or a Coulomb crystal. Under such conditions, electrons are usu-
ally most important charge and heat carriers, and the electrical
and thermal conductivities are mainly determined by electron
scattering off ions (hereafter,ei scattering).

The conductivities of degenerate electrons due toei scatter-
ing were studied in a number of papers. The general formalism,
based on a variational method (Ziman 1960), has been devel-
oped by Flowers & Itoh (1976) (see references to earlier results
therein). Their numerical results, however, have been critically
revised by Yakovlev & Urpin (1980), who developed a sim-
ple analytical description of the conduction due toei scattering
in dense Coulomb plasmas. The results by Yakovlev & Urpin
(1980) were confirmed in detailed calculations for both solid
(Raikh & Yakovlev 1982) and liquid (Itoh et al. 1983; Nandku-
mar & Pethick 1984) regimes. Later Yakovlev (1987) calculated
the electron transport coefficients in the liquid phase taking into
account non-Born corrections. In Paper I, the authors performed
extensive calculations of the same coefficients including addi-
tionally the effects of responsive electron background on the ion
structure factors.

Itoh et al. (1984, 1993) improved the results by Yakovlev &
Urpin (1980) and Raikh & Yakovlev (1982) in the solid regime
by including the nuclear form factorF (q) (where~q is a momen-
tum transfer), in order to take into account finite sizes of atomic
nuclei, and studied the role of the Debye–Waller factore−2W (q)

(e.g., Kittel 1963), which describes reduction ofei scattering
rate in a crystal due to lattice vibrations. The Debye–Waller
factor proved to be important at temperatures close to the melt-
ing temperature of a Coulomb crystal, and at sufficiently high
densities, where zero-point vibrations are large. Later Baiko &
Yakovlev (1995, 1996) made detailed Monte Carlo and analyt-
ical calculations of the electron transport in crystalline dense
matter including the nuclear form factor and the Debye–Waller
factor; they fitted the results by simple analytical expressions.
These results were in reasonable agreement with those obtained
by Itoh et al. (1984, 1993).

Nevertheless the transport theory developed in the cited arti-
cles possessed one important drawback: it predicted unrealisti-
cally large jumps (by a factor of 2–4) of the transport coefficients
at the melting point in spite of the fact that many other physical
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properties of ion liquid and solid were very similar. This indi-
cated that the theory was incomplete and had to be improved.

The improvements have been suggested recently by Baiko et
al. (1998) (hereafter Paper II). In the solid regime, multi-phonon
processes have been included in the electron-phonon scattering,
whereas all previous calculations used the one-phonon approx-
imation. Furthermore, it has been noted in Paper II, that the
static structure factor of ions conventionally used in the liquid
regime may require modification when applied to calculation
of the electron scattering processes because of appearance of
incipient ordered structures. The authors suggested an approx-
imate treatment of this effect by subtracting a certain part from
the static structure factor. Both modifications affect significantly
the electron transport properties near the melting point and re-
duce the jumps of the transport coefficients.

In this paper, we apply the results by Baiko et al. (1998) to
calculation of the electron electrical and thermal conductivities
in a wide range of physical parameters typical for the envelope
of a neutron star or the core of a white dwarf. We also derive
an effectiveei scattering potential that yields the conductivities
in a simple analytical form, reproducing the numerical results
within, at most, a few tens of percent in the whole of the phys-
ically meaningful range of the plasma parameters. Finally, we
discuss the main features of the electron transport properties,
and the role of various electron scattering mechanisms.

The paper is organized as follows. In Sect. 2 we introduce
basic definitions and give a brief overview of the main features of
electron conduction in different regimes. In Sect. 3 we describe
our calculation of the electron transport coefficients and propose
a fit to these coefficients. Numerical results are discussed in
Sect. 4.

2. Dense degenerate matter

2.1. Equilibrium properties

Consider fully ionized degenerate stellar matter in the density
range from about102–104g cm−3 to ∼ 1010g cm−3. For sim-
plicity, we assume that there is one ion species at any givenρ
andT .

The state of degenerate electrons can be described by the
Fermi momentumpF or wave numberkF:

pF = ~kF = ~ (3π2ne)
1/3 = mecxr, (1)

wherene is the electron number density,me is the electron
mass,xr ≈ 1.009 (ρ6Z/A)1/3 is the relativistic parameter,Z
is the ion charge number,A is the atomic weight, andρ6 is
mass densityρ in units of106g cm−3. The electron degeneracy
temperature is

TF = (εF − mec
2)/kB ≈ 5.93 × 109

(

√

1 + x2
r − 1

)

K, (2)

wherekB is the Boltzmann constant andεF = mec
2
√

1 + x2
r ≡

m∗
ec

2 is the electron Fermi energy. Our analysis is thus limited
by the conditionT � TF. It is also restricted to temperatures
T <∼ 5×109 K at which atomic nuclei do not dissociate. Electro-

static screening properties of the electron gas are characterized
by the Thomas–Fermi wave numberkTF:

k2
TF = 4πe2 ∂ne

∂µ
≈ αf

π

√

1 + x2
r

xr
(2kF)2, (3)

whereµ ≈ εF is the electron chemical potential andαf =
e2/~c = 1/137.036 is the fine-structure constant.

The state of ions (atomic nuclei) can be conveniently spec-
ified by the Coulomb plasma parameter

Γ =
(Ze)2

kBTai
≈ 22.75 Z2

T6

(ρ6

A

)1/3

, (4)

wheree is the elementary charge,ai = [3/(4πni)]
1/3 is the

ion-sphere radius,ni = ne/Z is the number density of ions, and
T6 is temperature in units of106 K. If Γ � 1, ions are weakly
coupled and form the Boltzmann gas. ForΓ >∼ 1, they constitute
a strongly coupled liquid. Freezing occurs at a temperatureTm

which corresponds toΓ = Γm. For classical ions,Γm = 172,
whereas quantum effects (zero-point ion vibrations) suppress
the freezing and increaseΓm (Nagara et al. 1987). The quantum
effects become important atT � Tp, where

Tp = ~ωp/kB ≈ 7.832 × 106 (Z/A)ρ
1/2
6 K (5)

is the ion plasma temperature,ωp = (4πZ2e2ni/mi)
1/2 is

the ion plasma frequency,mi = Amu is the ion mass, and
mu = 1.6605 × 10−24 g is the atomic mass unit. Under re-
alistic conditions, the quantum effects strongly suppress crys-
tallization of hydrogen and helium plasmas, but do not affect
significantly the melting of carbon and heavier elements (e.g.,
Chabrier 1993). However, they affect the properties of matter
of any composition atT � Tp.

2.2. Transport coefficients and structure factors

Electrical (σ) and thermal (κ) conductivities of degenerate elec-
trons can be conveniently expressed through effective electron
collision frequencies,νσ andνκ, as (e.g., Ziman 1960; Yakovlev
& Urpin 1980)

σ =
nee

2

m∗
eνσ

, κ =
π2k2

BTne

3m∗
eνκ

. (6)

The collision frequencies are reduced to sums of partial collision
frequencies associated with relevant electron scattering mech-
anisms which can be studied separately. This approximation is
accurate to∼ 1% in the case of strongly degenerate electrons
(e.g., Ziman 1960; Lampe 1968).

In the solid phase atT � Tp, where the frequency ofei
collisionsνei

σ,κ is strongly reduced, the electron transport is lim-
ited by scattering off various irregularities of the crystalline
structure. The particular case of ion impurities, occasionally
embedded in the lattice, was studied in detail by Itoh & Ko-
hyama (1993) and will be taken into account in this article; in
this case charge and heat transport are determined by a sin-
gle collisional frequencyνimp. On the other hand, in the liquid
phase, at not very strong electron degeneracy forZ <∼ 6 the
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thermal (but not the electrical) conductivity may be affected
by electron-electron (ee) collisions. Theeecollision frequency
νee was evaluated, e.g., by Urpin & Yakovlev (1980), Timmes
(1992), and in Paper I [see Eq. (32) below]. These results for
electron-electron and electron-impurity scattering are not mod-
ified by the present consideration. The total effective collision
frequencies areνσ = νei

σ , νκ = νei
κ + νee

κ in the liquid and
νσ,κ = νei

σ,κ + νimp in the solid.
We will focus onei scattering. In a weakly coupled ion gas,

Γ � 1, collective effects lead to a dynamical ion screening
of ei interaction which can be described by the dynamical di-
electric function formalism (e.g., Williams & DeWitt 1969).
In a strongly coupled ion liquid, it is customary to use the
static structure factor of ions in order to describe the corre-
lation effects (Hubbard 1966). This description, however, does
not apply to quantum liquids, such as H or He at high densi-
ties (e.g., Chabrier 1993). In crystalline matter,ei interaction
is adequately described in terms of absorption and emission of
phonons (Abrikosov 1961). The description can be realized us-
ing a dynamical structure factor of ions (Flowers & Itoh 1976).

The ei collision frequencies can be expressed through di-
mensionlessCoulomb logarithmsΛσ,κ (cf. Yakovlev & Urpin
1980):

νei
σ,κ =

4πZ2e4ni

p2
FvF

Λσ,κ =
4ZεF
3π~

α2
f Λσ,κ, (7)

wherevF = pF/m∗
e is the electron Fermi velocity.

For a strongly coupled plasma of ions (Γ >∼ 1), the Coulomb
logarithms calculated in the variational approach (with the sim-
plest trial functions, Ziman 1960) in the Born approximation
read

Λσ,κ =

∫ 2kF

q0

dq q3u2(q) Sσ,κ(q)

[

1 − v2
F

c2

(

q

2kF

)2
]

, (8)

where q0 is the cutoff parameter, equal to zero for the liq-
uid phase and to the equivalent radius of the Brillouin zone
qB = (6π2ni)

1/3 in the solid phase. The latter cutoff filters out
umklappelectron-phonon processes, which operate atq > qB

and give the main contribution toΛσ,κ, from normal processes,
that take place atq < qB and are negligible under the con-
ditions of study (e.g., Baiko & Yakovlev 1995). Furthermore,
u(q) ≡ |U(q)|/(4πZe2), U(q) is the Fourier transform of the
elementaryei scattering potential, the factor in square brackets
describes kinematic suppression of backward scattering of rela-
tivistic electrons (e.g., Berestetskii et al. 1982), andSσ,κ(q) are
theeffectivestatic structure factors which take into account ion
correlations, as discussed below.

In order to take into account corrections to the Born ap-
proximation, we multiply additionally the integrand in Eq. (8)
by the ratio of the exact cross section of Coulomb electron scat-
tering to the Born cross section. This approximate treatment
of non-Born corrections was proposed by Yakovlev (1987) and
used in Paper I. The corrections are significant forZ >∼ 20 and
ρ >∼ 106g cm−3.

In the case of Coulomb scattering, one has

u(q) =
F (q)

q2|ε(q)| , (9)

whereε(q) is a static longitudinal dielectric function of the elec-
tron gas (Jancovici 1962), describing electron screening of the
scattering potential. The static (ω → 0) approximation of elec-
tron screening is adequate as long as typical energies transferred
~ω are small compared with~qvF, which is the case, since the
momentum transfer~q ∼ pF. At densitiesρ < 1010 g cm−3

and under the condition of full ionization, one can safely set the
ion form factorF (q) equal to 1, which corresponds to point-like
nuclei.

The structure factors in Eq. (8) are given by (Paper II)

Sσ(q) =

∫ +∞

−∞
dω S′′(q, ω)

z

1 − e−z
, (10)

Sκ(q) = Sσ(q) +

(

3k2
F

q2
− 1

2

)

δSκ(q), (11)

δSκ(q) =

∫ +∞

−∞
dω S′′(q, ω)

z3

1 − e−z
. (12)

In this casez = ~ω/(kBT ) andS′′(q, ω) is the inelastic part
of the total dynamical structure factorS(q, ω) = S′′(q, ω) +
S′(q)δ(ω), whereas the elastic part,S′(q)δ(ω), describes Bragg
diffraction. When interaction of electrons with a crystalline lat-
tice is considered, the Bragg diffraction leads to appearance
of electron band structure (Bloch states) but does not con-
tribute to electron transport (e.g., Flowers & Itoh 1976). Ifz
values “allowed” byS′′(q, ω) in Eqs. (10)–(12) are small, as
it happens for scattering in a classical Coulomb system [i.e., at
T >∼ Tp; cf. Eq. (18)], we can pull the other functions containing
z out of the integral settingz = 0. ThenδSκ(q) vanishes, and
Sσ(q) = Sκ(q) = S′′(q), whereS′′(q) =

∫ +∞
−∞ S′′(q, ω) dω is

the inelastic part of the static structure factor. In this case the
variational solution that is used in Eq. (8) becomes exact.

In the liquid phase,Γ < Γm, it is only the static structure
factor in the classical regimeS(q) =

∫ +∞
−∞ dωS(q, ω) (e.g.,

Young et al. 1991 and references therein) that has been deter-
mined quite accurately. Thus we will consider onlyclassical
liquids,T >∼ Tp. In the solid phaseS(q, ω) was calculated with
reasonable accuracy in Paper II, which enables us to study the
transport properties of quantum and classical solids.

3. Calculation of electron conductivities

3.1. Solid phase

The dynamical structure factor of a Coulomb crystal has been
calculated in Paper II in the harmonic-lattice approximation,
taking into account explicitly multi-phonon processes. Forq >
qB the inelastic part may be written as

S′′(q, ω) =
e−2W (q)−~ω/(2kBT )

2π

∫ +∞

−∞
dt e−iωtK(q, T, t), (13)

K(q, T, t) = exp

[

~q2

2mi

〈

cos ωνt

ων sinh (zν/2)

〉

ph

]

− 1, (14)
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where〈. . .〉ph denotes averaging over the phonon spectrum in
the first Brillouin zone, and

W (q) =
3~

2mi

〈

(q · eν)2

ων

(

n̄ν +
1

2

)〉

ph

. (15)

In this case,ν ≡ (Q, s), s = 1, 2, 3 enumerates phonon polar-
izations,Q is a phonon wave vector,eν the polarization vector,
ων the frequency, and̄nν = (ezν − 1)

−1 is the mean number
of phonons,zν = ~ων/(kBT ). For the lattice types of inter-
est [e.g., body centred cubic (bcc) or face centred cubic (fcc)
ones],W (q) = r2

T q2/6, wherer2
T is the mean-squared ion dis-

placement. ThusW (q) does not depend on the orientation ofq.
An analytical fit toW (q) was proposed by Baiko & Yakovlev
(1995):

W (q) = α1

(

u−1 e−9.1η + 2η u−2

)

/4, (16)

whereη = T/Tp, un = 〈(ων/ωp)
n〉ph is a frequency moment

of Coulomb lattice (u−2 = 13.0 andu−1 = 2.8 for bcc lattice,
cf. Pollock & Hansen 1973), and

α1 = α0
q2

4k2
F

, α0 =
4k2

Fa2
i

3Γη
= 1.683

√

xr

AZ
. (17)

It is possible to derive an asymptote ofS′′(q, ω), Eq. (13),
for T � Tp (classical solid) and for|ω| � ωp. Expanding
cos ωνt ≈ 1 − (ωνt)2/2 andsinh (zν/2) ≈ zν/2 and noting
that the second term in Eq. (14) does not contribute intoS′′(q, ω)
at these frequencies, we obtain

S′′(q, ω) ≈ 1√
π qvT

exp

(

− ω2

q2v2
T

− ~ω

2kBT

)

, (18)

wherevT =
√

2kBT/mi is the thermal ion velocity. Thus in a
classical solid the collisional energy transfer is limited either by
~qvT or by~ωp, in both cases being smaller thankBT . Therefore
only the valuesz � 1 contribute to the integrals (10), (12) in
this case.

In the general case of classical or quantum Coulomb crys-
tals, the effective structure factors (10) and (12) can be written
as (Paper II)

Sσ(q) =
1

2
e−2W (q)

∫ +∞

−∞

dx

cosh2 x
K(q, T, t), (19)

δSκ(q) = e−2W (q)

∫ +∞

−∞
dx

1–2 sinh2 x

cosh4 x
K(q, T, t), (20)

wherex = πtT/~. We have calculatedSσ(q) andδSκ(q) for
the bcc lattice and fitted them by the expressions

Sσ(q) = e−2W (q)
(

e2W1(q) − 1
)

, (21)

δSκ(q) = α1

[

91 η2 e−2W (q)

(1 + 111.4η2)2

+
0.101 η4

(0.06408 + η2)(0.001377 + η2)3/2

]

, (22)

W1(q) =
α1 u−2 η2

2
√

η2 + (u−2/117)2
.

These fits cover a wide range of the parameters,0.001 ≤ η ≤
10 and0 ≤ α1 ≤ 0.3, sufficient for calculation of transport
coefficients. Eqs. (21) and (22) reproduce also the asymptotes
of the effective structure factors at low and highη which can be
obtained from Eqs. (19) and (20). The maximum fit error, equal
to 4%, occurs forα1 = 0.001, andη = 0.04.

We have also calculated the effective structure factors for
fcc Coulomb lattice and the results appear to be almost indis-
tinguishable from those obtained for bcc lattice. Therefore, the
electron transport coefficients are insensitive to the lattice type,1

and we will calculate them for bcc lattice.

3.2. Liquid phase

In the classical liquid, we employ the static structure factor,
S(q), obtained by Rogers and DeWitt (unpublished) for the
one-component classical plasma of ions in a rigid electron back-
ground by solving the modified hypernetted-chain (MHNC)
equations (Rosenfeld & Ashcroft 1979), and fitted by Young
et al. (1991) in the range1 ≤ Γ ≤ 225. For calculatingei
scattering rates, we have modified these structure factors by
subtracting the contribution of elastic scattering as prescribed
in Paper II:

Sσ,κ(q) = S(q) − e−2W (q)(2π)3ni

∑

G/=0

δ(q − G), (23)

where the sum is over all non-zero reciprocal lattice vectors
G, and the upper bar means averaging over orientations ofq.
This modification is meant to account for instantaneous electron
band-structures which emerge in a strongly coupled Coulomb
liquid because of local temporary crystal-like ordering. In this
context, the choice of the lattice type and corresponding vectors
G is ambiguous, but the Coulomb logarithms are insensitive to
it.

Since our consideration is based on the classical static struc-
ture factorS(q), we obtainΛσ = Λκ andνei

σ = νei
κ in the liquid

regime. This is justified because we typically haveT >∼ Tp, for
the cases under study (see below). Nevertheless we could easily
incorporate the quantum effects into the calculation, were the
quantum dynamical structure factorsS(q, ω) available for ion
fluid.

Note that in Paper I the Coulomb logarithms in the ion liquid
were calculated withS(q) obtained for a polarizable electron
background including the local field corrections. The effect of
the response of the background appeared to be noticeable for
H and He plasmas only. We neglect this effect in the present
calculations because our consideration of ion liquid for light
elements is approximate anyway due to the neglect of quantum
corrections toS(q).

For light elements, the highest temperatures corresponding
to the liquid regime,Γ ≥ 1, are much belowTF. Accordingly,
there exists a temperature range whereT < TF andΓ < 1.

1 The results by Baiko & Yakovlev (1995, 1996) for the fcc lattice,
which led to a different conclusion, were inaccurate due to an error in
a Brillouin zone integration scheme for this lattice.
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In this interval the formalism of the effective structure factors
does not provide an accurate treatment of ion screening. ForΓ ≤
0.25, the Coulomb logarithms were calculated in Paper I taking
into account dynamical character of ion screening atΓ � 1 and
kTF � kF (e.g., Williams & DeWitt 1969):

Λσ,κ = ln

(

2kF

qD

)

− ζ

2
ln

(

1

ζ

)

+
1 + ζ

2
ln

(

1

1 + ζ

)

−v2
F/(2c2) + β/2, (24)

qD =
√

3Γ/ai is the inverse Debye screening length of ion gas,2

ζ = (kTF/qD)2, andβ = παfZvF/c; β/2 is a lowest-order
non-Born correction in the weak electron-screening approxi-
mation (Yakovlev 1987).

The Coulomb logarithms in the transition domain from weak
(Γ � 1) to strong (Γ >∼ 1) ion coupling can be calculated using
the formalism by Boerker et al. (1982). We do not apply this
formalism, but the Coulomb logarithms calculated atΓ ≤ 0.25
and atΓ ≥ 1 converge nicely and can be fitted in a unified
manner. This convergence deteriorates at lowerρ ∼ 10–100
g cm−3, because electron screening ceases to be weak (kTF ∼
kF), and Eq. (24) becomes inaccurate.

3.3. Numerical results and fitting formulae

Using the effective structure factorsSσ,κ(q) described above,
we have calculated the Coulomb logarithmsΛσ,κ for Z from
1 to 26 and for mass numbersA corresponding to the most
abundant isotopes. The mass densityρ varied from10g cm−3

for Z = 1, 2 and from100g cm−3 for Z ≥ 3 to 1010g cm−3;
the coupling parameterΓ varied from 1 to104 for Z < 20 and
to 105 for 20 ≤ Z ≤ 26. The physically meaningful domain of
the parameters is constrained by several conditions. First, it is
assumed that the atoms are fully ionized (for a treatment of the
case of partial ionization, see below). Secondly, light elements
are not present at very high densities and temperatures since
they burn into heavier ones. Thirdly, our calculation in theliquid
phase is confined to the classical regime (T >∼ Tp), where the
quantum corrections to the ion structure factors are neglected.
Fourthly, electrons are assumed to be degenerate (T � TF).
Finally, the present formalism appears to be invalid at very low
temperatures,T � TpZ1/3e2/(~vF), where the electron band-
structure effects strongly reduceei scattering rate (e.g., Raikh
& Yakovlev 1982), which is not taken into account in Eq. (8).

For practical applications, especially for modelling thermal
and magnetic evolution of the neutron stars, as well as pulsa-
tions of the white dwarfs, it is desirable to have analytical for-
mulae for the transport coefficients, rather than tables, graphs
or cumbersome theoretical expressions. Analytical formulae for
σ andκ were presented in several papers based on the earlier
theoretical results described in Sect. 1 (Flowers & Itoh 1981;
Yakovlev & Urpin 1980; Itoh et al. 1993; Baiko & Yakovlev
1995; Paper I). As our present results are significantly different,

2 Definitions of the screening parameters below Eq. (15) of Paper I,
corresponding to the present Eq. (24), contained several misprints. Cor-
rect definitions are reproduced here.

we propose new analytical expressions, which combine reason-
able accuracy with simplicity.

Instead of constructing ad hoc fits to the numerical values
of σ andκ, we have chosen to devise aneffective ei-scattering
potentialthat would allow us to perform explicit analytical inte-
gration in Eq. (8) and that would reproduce correctly the familiar
limiting cases: the case of Debye ion screening in a weakly-
coupled plasma and the case of scattering by high-temperature
phonons. In the first case,u2(q)S(q) in Eq. (8) should be re-
placed by(q2 + q2

s )−2, whereqs is the inverse screening length.
In the second case (atTp <∼ T ≤ Tm), ei scattering rate is deter-
mined byu2(q)S′′(q), whereu2(q) ≈ (q2+k2

TF)−2, andS′′(q)
is the approximate effective static structure factor (Paper II)
which can be written asS′′(q) ≈ 1 − exp[−u−2a

2
i q

2/(3Γ)].
This approach ensures that the analytical limits mentioned above
are reproduced automatically by the fit expression.

We propose the following form of the effective potential in
Eq. (8):

[

u2(q)Sσ,κ(q)
]

eff
=

1 − e−w(q)

(q2 + q2
s )2

Gσ,κ(η, β)D(η), (25)

wheree−w(q) plays role of an effective Debye–Waller factor at
largeΓ and is negligible atΓ < 1, qs is an effective screening
wave number,D(η) is associated with the quantum correction to
the Debye–Waller factor, andGσ,κ(η, β) is a phenomenological
factor that describes reduction of thermal ion displacements in
quantum solid atT <∼ Tp and contains non-Born corrections
expressed through the argumentβ [see Eq. (24)]. Our numerical
results are reproduced with the following choice ofqs, w(q) and
Gσ,κ(η, β):

q2
s = (q2

i + k2
TF) e−β , (26)

q2
i (Γ) = q2

D (1 + 0.06 Γ) e−
√

Γ, (27)

w(q) = u−2(q/qD)2 (1 + β/3), (28)

Gσ(η, β) =
η

√

η2 + η2
0

(1 + 0.122β2), η0 =
0.19

Z1/6
, (29)

Gκ(η, β) = Gσ(η, β) + 0.0105
(

1 − Z−1
)

×
[

1 +
(vF

c

)3

β

]

η

(η2 + 0.0081)3/2
, (30)

D(η) = exp
(

−α0u−1 e−9.1η/4
)

, (31)

whereα0 is given by Eq. (17). Inserting Eq. (25) into Eq. (8), we
arrive at the analytical expressions for the Coulomb logarithms
presented in the Appendix.

The typical error of our fits in the physically reasonable
range of parameters is 3% (maximum 6%) forZ ≥ 20 and
gradually increases with decreasingZ. The maximum error oc-
curs for lowZ at the melting point in the high-density region,
where our formulae interpolate across the conductivity jump
discussed in the next section. For instance, a typical error for
carbon plasma is 8% and the maximum is 22% at the highest
density (ρ = 109g cm−3) andΓ = Γm.

Finally, let us outline the case of multicomponent ion mix-
tures. Actually the case deserves a separate study and we treat
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Fig. 1. Dependence of the electrical conductivity produced byei scat-
tering on temperature (lower horizontal scale) or Coulomb coupling pa-
rameter (upper horizontal scale) in carbon plasma atρ = 10

4 g cm−3.
Filled circles show the present numerical results, and the solid line is
given by our fitting formula. The dashed line is obtained under tradi-
tional assumptions (see the text) and exhibits a jump at the melting
point. Dotted lines are obtained including electron scattering by16O
impurities with concentrationsximp = 0.02 and 0.04.

it approximately here. At least forT >∼ Tp, it would be a good
approximation to replaceZ2niΛei → ∑

j Z2
j njΛej in Eq. (7),

where summation is over all ion speciesj, and the Coulomb
logarithmΛej depends generally onj. In a strongly coupled ion
system we recommend to calculateΛej from Eqs. (A1), (26)–

(31) withZ = Zj andΓj = Z
5/3
j e2(4πne/3)1/3(kBT )−1 (the

ion-coupling parameter for ion speciesj). The latter expres-
sion is prompted by the “additivity rule” that is highly accurate
for thermodynamic functions of multicomponent ion mixtures
(Hansen et al. 1977).

Another option is to adopt the widely used mean-ion ap-
proximation. In the latter approximation, the plasma is treated
as a mixture of electrons and one ionic species, with an effective
chargeeZeff equal to an average charge of all ions at different
ionization stages. The mean-ion approximation can be used also
in the regime of partial ionization (cf. Paper I).

4. Discussion of the results

Fig. 1 shows the temperature dependence of the electrical con-
ductivity of degenerate electrons in a carbon plasma atρ =
104 g cm−3. Fig. 2 shows the same dependence of the thermal
conductivity. Upper horizontal scale indicates corresponding
values of the ion coupling parameterΓ. Since the ion charge
number is rather low,Z = 6, non-Born corrections are insignif-
icant. All the data presented in the figures, except dotted lines,
show the conductivities produced solely byei scattering.

Fig. 2. Same as in Fig. 1 but for the thermal conductivity.

Filled circles display our present numerical values of the
conductivities, while solid lines are the analytical fits. Dashed
lines show the ‘old’ conductivities calculated using the ap-
proximations which have been widely employed in the previ-
ous works (Sect. 1): the one-phonon approximation in the solid
phase and use of the total (inelastic + elastic) ion structure factor
in the liquid phase. One can see large jumps of the ‘old’ curves
at the melting point. These jumps were present for all elements
and for all plasma parameters, and they were typically a fac-
tor of 2–4 in magnitude (Itoh et al. 1993). The modification of
the structure factors improves the treatment of the conductivi-
ties both in the liquid and solid phases of strongly-coupled ion
system (Sects. 3.1 and 3.2) and makes the jumps almost invisi-
ble for different chemical elements in a broad range of densities.
This has allowed us to produce the unified fits which are equally
valid in solid and liquid matter.

Nevertheless, our calculations do show large jumps of the
conductivities at the melting point at high densities, where zero
point vibrations become important. We suggest that these jumps
are artificial and come from using classical ion structure factors
in ion liquid (Sect. 3.2) under the conditions in which quantum
effects in liquid are really important. On the other hand, the
quantum effects are properly included in our calculations for
crystalline matter. Since the numerical data used for construct-
ing the fitting formulae include both phases, liquid and solid,
the fitting of these data by the unified analytical expressions
shifts the conductivities in the liquid phase closer to those in
the solid phase. Therefore we expect that the fits in the high-
density ion liquid give more reliable electron conductivities than
our original numerical data. This assumption will be checked in
the future when the structure factors in ion liquid are calculated
taking into account the quantum effects.

Dotted lines in Figs. 1 and 2 show the effect of another elec-
tron scattering mechanism – scattering by charged impurities
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Fig. 3. Electrical conductivity produced byei scattering in Fe matter
at ρ = 10

8 g cm−3 vs temperature or Coulomb coupling parameter.
Filled circles show the present numerical results, and the solid line is
the fit (non-Born corrections included). Open circles are the present
results but in the Born approximation. The dashed line is the old result
in the Born approximation.

(Sect. 2.2). We have assumed an admixture of oxygen nuclei
with concentrations 2% and 4%. Electron-impurity scattering
is seen to have little effect on the conductivities at high tem-
peratures, but it becomes dominant scattering mechanism at
T � Tp.

Figs. 3 and 4 are analogous to Figs. 1 and 2 and show the
temperature dependence of the conductivities produced byei
scattering in iron plasma atρ = 108 g cm−3. Filled dots are
our numerical results and solid lines are the fits. One can again
see large jumps of the traditional conductivities at the melting
point, and the smooth character of the improved curves. For el-
ements with highZ (like Fe), the non-Born corrections become
important in a dense plasma (Yakovlev 1987). To illustrate this
effect, open circles display results of our calculations in the Born
approximation. The non-Born corrections are seen to increase
theeicollision frequency (decrease the conductivities) by about
20–30%. The corrections become lower when density decreases
below106 g cm−3. Dashed lines show the ‘old’ conductivities
calculated in the Born approximation. The divergence between
the ‘old’ and new results in the Born approximation, seen in
Fig. 4 at relatively low temperatures, is caused by a not very ac-
curate determination of the low-temperature (T � Tp) asymp-
tote of an effective electron-phonon potential in the ‘old’ results
by Baiko & Yakovlev (1995).

The density dependence of the thermal conductivity at sev-
eral values ofT is displayed in Figs. 5 and 6. Fig. 5 shows the
thermal conductivity of iron plasma in the density range appro-
priate to the outer envelope of a neutron star atlg T [K]= 6.5,
7.0, 7.5 and 8.0. Fig. 6 shows the thermal conductivity of mat-
ter composed of H, He, C, Fe atT = 107 K in about the same

Fig. 4. Same as in Fig. 3 but for the thermal conductivity.

Fig. 5. Thermal conductivity vs density in iron plasma at severalT .
Various symbols show numerical results, and curves are the fits. Con-
ductivity due toeecollisions is included but is entirely unimportant.
Impurities are neglected.

density range (related to the outer envelope of a neutron star
or to the core of a white dwarf). We assume that no impurities
are present, but we include the contribution ofeescattering in
addition to theei scattering. Theeescattering contributes toνκ,
i.e, lowers the thermal conductivity. According to Paper I,

νee =
3α2

f (kBT )2

2π3 ~m∗
ec

2

(

2kF

kTF

)3

J(xr, y), (32)

wherey =
√

3 Tpe/T , Tpe = (~/kB)
√

4πe2ne/m∗
e is the

electron plasma temperature, and

J(xr, y) ≈
(

1 +
6

5x2
r

+
2

5x4
r

) [

y3

3(1 + 0.07414 y)3
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Fig. 6. Thermal conductivity vs density in matter of different chemical
composition (H, He, C, Fe) atT = 10

7 K. Filled circles are numerical
values and curves are fits. Lower curves and circles are calculated
including ei and ee collisions, while upper curves and circles take
account ofei collisions alone.

× ln

(

1 +
2.81

y
− 0.81

y

v2
F

c2

)

+
π5

6

y4

(13.91 + y)4

]

. (33)

For a plasma of light elements,Z <∼ 6, the strongest effect of the
eecollisions takes place at temperatures comparable to degen-
eracy temperatureTF (Lampe 1968; Urpin & Yakovlev 1980),
as confirmed by Fig. 6. For Fe matter,eecollisions are unimpor-
tant. For H and He plasmas, their effect is more pronounced at
lowerρ, where the chosen temperature,T = 107 K, is closer to
TF. We conclude thateecollisions do not play a leading role in
thermal transport by degenerate electrons but should be taken
into account in a plasma composed of light elements.

The strong effect of chemical composition (Fig. 6) is re-
lated to theZ-dependence of the collision frequenciesνei

σ,κ. The
higher isZ, the larger isνei

σ,κ, and the lower is the conductivity.
Comparing Figs. 5 and 6 we see that a temperature variation
by a factor of 30 can change the thermal conductivity of iron
plasma much less than altering the chemical composition from
H to Fe at fixedT . This effect has important consequences for
the relationship between surface and internal temperatures of
neutron stars (Paper I).

Finally let us consider partially ionized matter. We expect
that this case can be considered in the mean-ion approxima-
tion (Sect. 3.3). Fig. 7 shows the dependence of the Coulomb
logarithmsΛσ andΛκ on the effective Coulomb plasma param-
eterΓ = Z2

effe2(4πni/3)1/3(kBT )−1 for a partially ionized Fe
matter atρ = 103 g cm−3 andZeff = 4. The assumption that
Zeff is independent of temperature is unrealistic, and we adopt
it for illustration only. Open and filled symbols show numerical
values ofΛσ andΛκ, respectively, calculated in the mean-ion
approximation, while dotted and dashed lines are the fit curves.

Fig. 7. Coulomb logarithms versus effective Coulomb coupling param-
eter for a partially ionized iron plasma with effective chargeZeff = 4

atρ = 10
3 g cm−3 in the mean-ion approximation.

Although we did not include the data withZ � A/2 in the
fitting, our fit formulae appear to be robust and reproduce them
quite well.

5. Conclusions

We have reconsidered the electrical and thermal conductivi-
ties of degenerate electrons produced byei scattering, using the
modified structure factors of ions as suggested in Paper II. We
have analysed the electron transport in a wide range of den-
sities, from about102–104g cm−3 to ∼ 107–1010g cm−3, and
temperaturesT ∼ 104–109 K, for chemical compositions of as-
trophysical importance. The obtained conductivities differ sig-
nificantly from those calculated previously in a wide range of
temperatures,Tm/5 <∼ T <∼ 5Tm, near the melting temperature
Tm of Coulomb crystals. Our new approach has reduced unreal-
istically large jumps of the transport coefficients at the melting
point obtained in the earlier works. This, in turn, allowed us to
develop a unified description of electron conduction in liquid
and crystal matter and obtain an effective potential for theei
interaction.

Theei scattering, which we studied in this article, is known
to be the most important mechanism of electron relaxation under
prevailing physical conditions in the envelopes of neutron stars
and in the cores of white dwarfs. We expect that the improved
transport coefficients can be used to solve various problems of
the physics of neutron stars and white dwarfs (cooling, evolution
of accreting stars, nuclear burning of matter, pulsation modes,
evolution of magnetic fields, etc.).
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Appendix A: analytical fits to Coulomb logarithms

Carrying out the integration in Eq. (8) with the effective po-
tential given by Eq. (25) yields the following expressions for
the Coulomb logarithms, which enter Eq. (7) for the effective
collision frequencies:

Λfit
σ,κ =

[

Λ1(s, w) − v2

c2
Λ2(s, w)

]

Gσ,κ(η, β). (A1)

Heres = q2
s /(2kF)2, w = w(2kF) [see Eqs. (26)–(31)],

2Λ1(s, w) = ln
s + 1

s
+

s

s + 1
(1 − e−w)

− (1 + sw) esw [E1 (sw) − E1 (sw + w)] , (A2)

2Λ2(s, w) =
e−w − 1 + w

w
− s2

a + 1
(1 − e−w) − 2s ln

s + 1

s
+ s(2 + sw) esw [E1 (sw) − E1 (sw + w)] , (A3)

andE1(x) =
∫ ∞

x
y−1e−y dy is the exponential integral given,

for example, by the rational-polynomial approximations in
Abramowitz & Stegun (1972).

In the particular case ofs � 1 ands � w−1, numerical
cancellation of large numbers can be avoided with aid of the
asymptotic expressions

Λ1(s → 0, w) =
1

2
[E1(w) + lnw + γ] , (A4)

Λ2(s → 0, w) =
e−w − 1 + w

2w
, (A5)

whereγ = 0.5772 . . . is the Euler’s constant.
In the limiting case ofw � 1, we obtain

Λ1(s, w � 1) ≈ w

(

2s + 1

2s + 2
− s ln

s + 1

s

)

, (A6)

Λ2(s, w � 1) ≈ w

(

1–3s − 6s2

4s + 4
+

3

2
ln

s + 1

s

)

. (A7)

In the opposite case ofw � 1, the familiar expressions for
the Debye-like screening are recovered:

Λ1(s, w � 1) =
1

2

(

ln
s + 1

s
− 1

s + 1

)

, (A8)

Λ2(s, w � 1) =
2s + 1

2s + 2
− s ln

s + 1

s
. (A9)
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