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INTRODUCTION

Collisions between multiply charged heavy ions
have been little studied theoretically in the physics of
atomic collisions. Gaining insight into charge transfer
between identical low-charged heavy ions is vital to
designing accelerators and storage rings with the aim to
generate intense ion beams. Such beams can also find
application in heavy-ion-driven inertial fusion [1].
When generating intense beams, one should estimate
particle losses in the beams because of a change in the
charge state of ions (due to charge transfer and ioniza-
tion) colliding in the beam. Charge transfer in the beam
takes place at a collision energy of ions of 

 

≈

 

50 keV in
the center-of-mass frame when they move normally to
the beam direction because of betatron oscillations.

Recently, the charge transfer total cross sections
were measured in slow collisions between four-charged
Ar, Kr, Xe, Pb, and Bi heavy ions in experiments with
crossed beams [2]. The results obtained in [2] are to an

extent uncertain, since the crossed beam had metastable
ions, for which the cross section of collision-induced
charge transfer is larger than for ions in the ground
state. Additional experiments showed [2] that the frac-
tion of metastable ions amounts to 12–29% for Ar

 

4+

 

,
Kr

 

4+

 

, and Xe

 

4+

 

 ions. For these ions, the ionization cross
sections were also measured and the particle losses in
the beam were estimated [2].

In this work, we give a theoretical analysis of the
charge transfer and excitation processes occurring in
collisions between Bi

 

4+

 

 ions in the ground (6

 

s

 

) and
metastable (6

 

p

 

) states.

The fraction of metastable ions in the beam is esti-
mated by comparing the calculated and experimental
results for the charge transfer total cross sections.

We consider the processes of single-electron charge
transfer (reactions 1a and 1b, see below) and excitation
(process 1c) taking place in collisions between Bi

 

4+
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Abstract

 

—Pioneering theoretical data for single-electron charge transfer and excitations due to collisions
between Bi

 

4+

 

 ions in the ground (6

 

s

 

) and metastable (6

 

p

 

) states are gained in the collision energy interval 5–
75 keV in the center-of-mass frame. The cross sections of the processes are calculated in terms of the close-
coupling method in the basis of two-electron quasi-molecular states for the Coulomb trajectory of nuclei. It is
found that single-electron capture into the singlet 6

 

s

 

2

 

 states of Bi

 

3+

 

 ions makes a major contribution to the
charge transfer total cross section for Bi

 

4+

 

(6

 

s

 

) + Bi

 

4+

 

(6

 

s

 

) collisions (reaction 1), whereas single-electron capture
into the singlet 6

 

s

 

6

 

p

 

 states is the basic contributor to the total cross section in Bi

 

4+

 

(6

 

s

 

) + Bi

 

4+

 

(6

 

p

 

) collisions
(reaction 2). In the collision energy interval mentioned above, the collision cross sections vary between 1.2 

 

×

 

10

 

–17

 

 and 1.9 

 

×

 

 10

 

–17

 

 cm

 

2

 

 for reaction 1 and between 3.8 

 

×

 

 10

 

–17

 

 and 5.3 

 

×

 

 10

 

–17

 

 cm

 

2

 

 for reaction 2. In reaction 1,
the 6

 

s

 

  6

 

p

 

 excitation cross sections vary from 0.6 

 

×

 

 10

 

–16

 

 to 0.8 

 

×

 

 10

 

–16

 

 cm

 

2

 

 for the singlet channel and
from 2.2 

 

×

 

 10

 

–16

 

 to 2.8 

 

×

 

 10

 

–16

 

 cm

 

2

 

 for the triplet channel. The calculation results are compared with the data
obtained in experiments with crossed ion beams of kiloelectronvolt energy. The fraction of metastable ions in
the beams is estimated by comparing the experimental data with the weighted average theoretical results for the
cross sections of reactions 1 and 2. From the data for the charge transfer cross sections, one can estimate particle
losses in relativistic beams due to a change in the charge state of the ions colliding with each other in the beam
because of betatron oscillations.
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ions in the ground state for the singlet and triplet reaction channels,

 

where 

 

∆

 

E

 

 is the resonance defect.
The singlet and triplet entrance channels were also

considered for excitations (1c).
For the triplet channel of single-electron charge

transfer, the resonance defect is much higher than for
the singlet channel. Therefore, channel (1b), as well as

collisions between ions in the ground and metastable
states, was ignored in our earlier publication [3]. Here,
we consider the singlet (

 

m

 

 = 1) and triplet (

 

m

 

 = 3)
channels of charge transfer reactions taking place in
collisions between ions in the ground and metastable
states,

 

(reaction (2c) was considered for both the singlet and
triplet entrance channel).

The ion total energy used to estimate the resonance
defects was calculated in the relativistic Hartree–Fock–
Slater approximation.

THEORETICAL GROUNDS

The cross sections of reactions 1 and 2 were calcu-
lated in a quasi-classical approximation in terms of the
close-coupling method in the basis of two-electron
quasi-molecular states (the effect of electrons of
Bi

 

5+

 

(5

 

d

 

10

 

) ion cores was taken into account by the
effective potential technique). In this approximation,
the problem reduces to finding electron wave function

(

 

r

 

1

 

, 

 

r

 

2

 

, 

 

t

 

) that satisfies the nonstationary Schrödinger
equation

(3)

where 

 

H

 

(

 

r

 

1

 

, 

 

r

 

2

 

, 

 

R

 

(

 

t

 

)) is the two-electron Hamiltonian,
which parametrically depends on time through nuclear
spacing 

 

R

 

(

 

t

 

),

(4)

Here, 

 

H

 

0

 

(

 

r

 

k

 

; 

 

R

 

) is specified for each one-electron

molecular orbital 

 

ψ

 

n

 

(

 

r

 

k

 

; 

 

R

 

) in the form

(5)

Effective potential (

 

r

 

k

 

; 

 

R

 

) taking into account
that the quasi-molecule contains many electrons is
specified parametrically [4],

(6)

In (3)–(6), 

 

r

 

k

 

 are the coordinates of outer-shell elec-
trons, 

 

r

 

ak

 

 and 

 

r

 

bk

 

 are the distances of a 

 

k

 

th electron to
nuclei with charges 

 

Z

 

A

 

 and 

 

Z

 

B

 

 (

 

A

 

 is an incident ion, and

 

B

 

 is the target; 

 

Z

 

A

 

 = 

 

Z

 

B

 

 = 5), and 

 

r

 

12

 

 is the distance
between the electrons. The effective potential in form
(6) allows separation of variables in the one-electron
Schrödinger equation,

(7)

in the prolate spheroidal coordinate system. This, in
turn, makes it possible to obtain [4] diabatic screened
diatomic molecular orbitals (SDMOs) 

 

ψ

 

n

 

 that preserve
the symmetry of commonly used one-electron diatomic

molecular orbitals of  [5]. Parametrization of the
effective potential is discussed below. SDMOs are cat-
egorized based on the spherical quantum numbers (

 

n

 

, 

 

l

 

,

S2 Bi4+ 6s( ) S2 Bi4+ 6s( )+

S1 Bi3+ 6s2( ) S1 Bi5+ 5d10( ), ∆E+ 11.16 eV;=

P3 Bi3+ 6s6 p( ) S1 Bi5+ 5d10( ), ∆E+ 21.15 eV;=

P2 Bi4+ 6 p( ) S2 Bi4+ 6s( ), ∆E+ 10.71 eV,=⎩
⎪
⎨
⎪
⎧ 1a( )

1b( )

1c( )

S2 Bi4+ 6s( ) P2 Bi4+ 6 p( )+

Pm Bi3+ 6s6 p( ) S1 Bi5+ 5d10( ), ∆E+ 10.44 eV;=

S1 Bi3+ 6s2( ) S1 Bi5+ 5d10( ), ∆E+ 0.46 eV;=

P2 Bi4+ 6 p( ) S2 Bi4+ 6s( ), ∆E+ 0=⎩
⎪
⎨
⎪
⎧ 2a( )

2b( )

2c( )

Ψ̃

i
∂Ψ̃ r1 r2 t, ,( )

∂t
----------------------------- H r1 r2 R t( ), ,( )Ψ̃ r1 r2 t, ,( ),=

H H0 rk; R( )
k 1 2,=

∑ 1
r12
------.+=

H0 rk; R( )
∇k

2

2
------– V eff

2 rk; R( ).+=

V eff
2

V eff
n rk; R( )

ZA

rak

------–
ZB

rbk

------–
1
2
---

a1
n b1

n–
rak

----------------
a1

n b1
n+

rbk

----------------++=

+
ã1

n Ra0
n+

rakrbk

--------------------
b2

n rak rbk–( )2

Rrakrbk

-------------------------------+ .

H0 r; R( )ψn r; R( ) εn R( )ψn r; R( )=

H2
+
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m) of the state of a united atom into which a given
orbital passes at R  0. A correspondence between a
given orbital and atomic levels at R  0 and R  ∞
is established using the Barat–Lichten correlation
rules [6].

A solution to Eq. (3) is sought in the form of expan-
sion in orthonormalized basis Ψl(r1, r2; R) of two-elec-
tron states,

(8)

where

(9)

Substituting (8) into (3) yields a set of linear differ-
ential equations in coefficients al. For the Coulomb tra-
jectory of nuclei, it has the form [7]

(10)

Here, ρ is the impact parameter, v is the relative veloc-
ity of colliding particles, γ = ZAZB/µv 2, µ is the reduced
mass,

and

(11)

are the matrix elements of dynamic (radial, Rlk, and
rotational, Llk) couplings between the basic states, and

(12)

Ψ̃ r1 r2 t, ,( ) al t( )Ψl r1 r2, ; R( )
l 1=

n

∑=

× i El R( ) t'd

0

t

∫–
⎝ ⎠
⎜ ⎟
⎛ ⎞

,exp

El R( ) Ψl r1 r2, ; R( ) H Ψl r1 r2, ; R( )〈 〉 .=

dal τ( )
dτ

-------------- = ak τ( )
τ

R γ–
------------Rlk R( )

ρ
R R γ–( )
---------------------Llk R( )+

⎩
⎨
⎧

k l≠
∑–

+
i
v
---- R

R γ–
------------Hlk R( )

⎭
⎬
⎫ i

v
---- Ek R( ) El R( )–( ) R

R γ–
------------ τd

0

τ

∫–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp

R τ( ) τ2 γ 2 ρ2+ +( )
1/2

γ ; ∞– τ ∞< <+=( ).

Rlk Ψl r1 r2; R,( ) d/dR Ψk r1 r2; R,( )〈 〉=

Llk Ψl r1 r2; R,( ) iLy Ψk r1 r2; R,( )〈 〉=

Hlk Ψl r1 r2; R,( ) H Ψk r1 r2; R,( )〈 〉=

are the matrix elements of potential couplings.

When writing close-coupling equation (10) and cal-
culating the dynamic matrix elements, we assumed that
the origin of the coordinate system in which the nuclei
move is placed in the middle of the nucleus spacing, the
z axis coincides with the direction of the incident ion
initial velocity, and the y axis runs normally to the plane
(x0z) of collision.

To calculate reactions 1 and 2, we took one-electron
orbitals

(13)

In the separated atom limit, the wave functions of
these orbitals are expressed through the even and odd
combinations of atomic 6sA and 6sB functions and 6pA

and 6pB functions of incident atom A and target atom B,

(14)

The parameters of the effective potential used to cal-
culate SDMOs were determined as follows. Quantities

 and  were found from the requirement that energy
εn(R) of molecular orbital ψn and mean effective poten-

tial (r; R) = 〈ψn| |ψn〉| turn to their respective val-

ues  and  obtained by atomic calculations in the

united atom limit. Parameters  and  (for homonu-
clear systems, b1 ≡ 0) were determined from the
requirement that energy εn(R) at large nucleus spacings
(R  ∞) take its asymptotic limit, εn(R)|R → ∞ 
εsa – 4/R, where εsa is the energy of an atomic state (n',
l', m) into which a given orbital passes in the separated
atom limit. Detailed expressions for these parameters
are given in [8]. The parameters thus obtained and the

values of atomic quantities , , and εsa are listed in
Tables 1 and 2. Orbitals ψn(r; R) of the same symmetry
that are determined from (7) are nonorthogonal to each
other because of the dependence of effective potential

 on state n. The set of orthogonalized [9] one-parti-

cle states (r; R) that corresponds to basic set (13)
and is subsequently used to construct an orthogonal

ψ1
g 6sσ, ψ2

u 7 pσ, ψ3
g 7dσ,= = =

ψ4
u 8 fσ.=

6sσ r; R( )R ∞→
1

2
------- 6sA 6sB+( ),

7 pσ r; R( )R ∞→
1

2
------- 6sA 6sB–( ),

7dσ r; R( )R ∞→
1

2
------- 6 pA 6 pB+( ),

8 fσ r; R( )R ∞→
1

2
------- 6 pA 6 pB–( ).

ã1
n a1

n

V eff
n

V eff
n

εnl
ua Vnl

ua

a0
n b2

n

εnl
ua Vnl

ua

V eff
n

ψn'

Table 1.  Parameters of effective potentials  (in atomic

units) used in calculation of SDMOs ψn of the Bi4+ + Bi4+

quasi-molecule

ψn

6sσ –0.250 –55.94 320.798 –278.863

7pσ –2.247 –28.88 141.949 –127.852

7dσ –6.110 –5.18 –0.518 –5.832

8fσ –10.545 –0.35 –11.267 0.087

Veff
n

ã1
n a1

n a0
n b2

n
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basis of two-electron states Ψl(r1, r2; R) is

(15)

Expressions (15) are written with regard to the
smallness of the matrix elements of overlap between

orbitals ψn(r; R) (|S13| = |〈 | 〉|〈0.17 and |S24| =

|〈 | 〉|〈0.14). The energies and wave functions of
SDMOs, as well as the matrix elements of overlap
between them, were calculated using a special program
package [10].

Basic two-electron wave functions Ψl(r1, r2; R) were
constructed using symmetrized (even and odd) linear
combinations of two-electron one-configuration states
φi(r1, r2; R) that, in turn, were constructed on orthogo-

ψ1'  � ψ1
g S13

2
-------ψ3

g, ψ3'  � ψ3
g S13

2
-------ψ1

g,––

ψ2'  � ψ2
u S24

2
-------ψ4

u, ψ4'  � ψ4
u S24

2
-------ψ2

u.––

ψ1
g ψ3

g

ψ2
u ψ4

u

nalized one-electron quasi-molecular states (rk; R),

(16)

The plus and minus signs appearing in (16) refer to
singlet and triplet two-electron states, respectively.

The symmetrized singlet (r1, r2; R) and triplet

(r1, r2; R) linear combinations of one-configura-
tion two-electron states φi(r1, r2; R) used in calculation
of reactions 1 and 2, along with their atomic limits at
R  ∞,

(17)

obtained using relationships (14), are listed in Tables 3
and 4.

CALCULATION OF SINGLE-ELECTRON 
CHARGE TRANSFER AND EXCITATIONS 

IN COLLISIONS BETWEEN GROUND-STATE 
Bi4+(6s) ATOMS

Collisions between the ions in the ground state were
calculated using five two-electron states Ψl(r1, r2; R)
describing entrance channel Ψ1, charge transfer chan-
nels Ψ2 and Ψ3 (a, a' or b, b'), and channels Ψ4 and Ψ5
(c, c') of 6s–6p electron excitation in reactions 1. For

ψn'

φi r1 r2; R,( ) φi ψn' ψn'',[ ]≡

=  

1

2
------- ψn' r1; R( )ψn'' r2; R( ) ψn' r2; R( )ψn'' r1; R( )±[ ],

n n'≠
ψn' r1; R( )ψn' r2; R( ),   n n'.=⎩

⎪
⎪
⎨
⎪
⎪
⎧

Φ j
g u,

Φ j
g u,

χ j
g u, r1 r2,( ) Φ j

g u, r1 r2; R,( ),
R ∞→
lim=

χ j
g u, r1 r2,( ) Φ j

g u,
r1 r2; R,( ),

R ∞→
lim=

Table 2.  Energies  and the mean values of electron

potential  for SDMOs ψn in the unified atom approxima-

tion and energies εsa for SDMOs ψn in the separated atom
approximation (all the quantities are given in atomic units)

ψn

R = 0 R  ∞

nl n'l ' εsa

6sσ 6s –71.637 514 6s –2.004

7pσ 7p –82.992 663 6s –2.004

7dσ 7d –4.846 25.9 6p –1.609

8fσ 8f –1.509 5.39 6p –1.609

εnl
ua

Vnl
ua

εnl
ua

Vnl
ua

Table 3.  Symmetrized combinations (r1, r2; R) of singlet one-configuration states φi[ , ] = [ (r1) (r2) + (r2) (r1)]/

and their atomic limits at R  ∞

(r1, r2; R) Limit at R  ∞ ( )

(r1, r2; R) = (φ1[ , ] – φ2[ , ])/ [6sA, 6sB]

(r1, r2; R) = (φ1[ , ] + φ2[ , ])/ (6sA(1)6sA(2) + 6sB(1)6sB(2))/

(r1, r2; R) = (φ3[ , ] – φ4[ , ])/ ([6sA, 6pB] + [6sB, 6pA])/

(r1, r2; R) = (φ3[ , ] + φ4[ , ])/ ([6sA, 6pA] + [6sB, 6pB])/

(r1, r2; R) = φ1[ , ] (6sA(1)6sA(2) – 6sB(1)6sB(2))/

(r1, r2; R) = (φ2[ , ] – φ3[ , ])/ ([6sB, 6pA] – [6sA, 6pB])/

(r1, r2; R) = (φ2[ , ] + φ3[ , ])/ ([6sA, 6pA] – [6sB, 6pB])/

Φ j
g u, ψn' ψn '' ψn' ψn '' ψn' ψn '' 2

Φ j
g u, χ j

g u,

Φ1
g ψ1' ψ1' ψ2' ψ2' 2

Φ2
g ψ1' ψ1' ψ2' ψ2' 2 2

Φ3
g ψ1' ψ3' ψ2' ψ4' 2 2

Φ4
g ψ1' ψ3' ψ2' ψ4' 2 2

Φ1
u ψ1' ψ2' 2

Φ2
u ψ1' ψ4' ψ3' ψ2' 2 2

Φ3
u ψ1' ψ4' ψ3' ψ2' 2 2
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singlet collisions, we have

(18)

Here, (r1, r2; R) are the two-electron states pre-
sented in Table 3. For triplet collisions, the following
states were used:

(19)

Ψ1 r1 r2; R,( ) Φ1
g r1 r2; R,( ) entrance channel( ),=

Ψ2 r1 r2; R,( ) 1

2
------- Φ2

g r1 r2; R,( )(=

+ Φ1
u r1 r2; R,( ) ), a( ) 6sA 1( )6sA 2( );

Ψ3 r1 r2; R,( ) 1

2
------- Φ2

g r1 r2; R,( )(=

– Φ1
u r1 r2; R,( ) ), a'( ) 6sB 1( )6sB 2( );

Ψ4 r1 r2; R,( ) 1

2
------- Φ3

g r1 r2; R,( )(=

+ Φ2
u r1 r2; R,( ) ), c( ) 6 pA 6sB,[ ];

Ψ5 r1 r2; R,( ) 1

2
------- Φ3

g r1 r2; R,( )(=

– Φ2
u r1 r2; R,( ) ), c'( ) 6sA 6 pB,[ ].

Φ j
g u,

Ψ1 r1 r2; R,( ) Φ1
u

r1 r2; R,( ) entrance channel( ),=

Ψ2 r1 r2; R,( ) 1

2
------- Φ4

g
r1 r2; R,( )(=

+ Φ2
u

r1 r2; R,( ) ), b( ) 6sA 6 pA,[ ],

Ψ3 r1 r2; R,( ) 1

2
------- Φ4

g
r1 r2; R,( )(=

– Φ2
u

r1 r2; R,( ) ), b'( ) 6sB 6 pB,[ ],

Ψ4 r1 r2; R,( ) 1

2
------- Φ3

g
r1 r2; R,( )(=

Here, (r1, r2; R) are the two-electron states pre-
sented in Table 4. Expressions (18) and (19) can be

derived by using the limits of  and  at R 
∞ (see Tables 3 and 4).

To solve close-coupling equations (10), it is neces-
sary to set initial conditions imposed on coefficients al.

At t  –∞ (R  ∞), the quasi-molecule is in the
state Ψ1(r1, r2) = (r1, r2; R(t)) with energy

E1(∞),

(20)

From (20) in view of expansion (8), we get initial
conditions imposed on solutions to the close-coupling
equations,

(21)

For given impact parameter ρ, the probability ampli-
tude for transition from state Ψ1(r1, r2) to final state
Ψl(r1, r2) � (r1, r2; R(t)) can be represented in the

form

(22)

+ Φ3
u

r1 r2; R,( ) ), c( ) 6sB 6 pA,[ ],

Ψ5 r1 r2; R,( ) 1

2
------- Φ3

g
r1 r2; R,( )(=

– Φ3
u

r1 r2; R,( ) ), c'( ) 6sA 6 pB,[ ].

Φ j
g u,

Φ j
g u, Φ j

g u,

Ψ1
t ∞–→
lim

Ψ̃ r1 r2 t, ,( ) t ∞–→ Ψ1 r1 r2,( ) iE1 ∞( )t–( ).exp→

al ∞–( ) δ1l iν1–( ),exp=

ν1
1
v
---- E1 R( ) E1 ∞( )–[ ] R

R γ–
------------ τ.d

0

∞

∫=

Ψl
t ∞→
lim

bl ρ v,( ) Ψl r1 r2,( ) Ψ̃ r1 r2 t, ,( )〈 〉 iEl ∞( )t( )exp
t ∞→
lim=

=  al v ρ ∞, ,( ) iνl–( ),exp

Table 4.  Symmetrized combinations (r1, r2; R) of triplet one-configuration states [ψn, ψn'] = [ (r1) (r2) – (r2) (r1)]/

and their atomic limits at R  ∞

(r1, r2; R) Limit at R  ∞ ( )

(r1, r2; R) = ( [ , ] – [ , ])/ ([6sA, 6pB] + [6sB, 6pA])/

(r1, r2; R) = ( [ , ] + [ , ])/ ([6sA, 6pA] + [6sB, 6pB])/

(r1, r2; R) = [ , ] [6sB, 6sA]

(r1, r2; R) = ( [ , ] – [ , ])/ ([6sA, 6pA] – [6sB, 6pB])/

(r1, r2; R) = ( [ , ] + [ , ])/ ([6sB, 6pA] – [6sA, 6pB])/

Φ j
g u, φi ψn' ψn '' ψn' ψn '' 2

Φ j
g u, χ j

g u,

Φ3
g φ3 ψ1' ψ3' φ4 ψ2' ψ4' 2 2

Φ4
g φ3 ψ1' ψ3' φ4 ψ2' ψ4' 2 2

Φ1
u φ1 ψ1' ψ2'

Φ2
u φ2 ψ1' ψ4' φ3 ψ3' ψ2' 2 2

Φ3
u φ2 ψ1' ψ4' φ3 ψ3' ψ2' 2 2
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where

Set (10) of close-coupling equations with initial
conditions (21) was solved with the TANGO program
[11]. At R ≤ R0 = 30 a.u., matrix elements Hlj(R) of the
two-electron Hamiltonian were calculated with the use
of the program described in [10] (the matrix elements
of the two-electron Hamiltonian calculated in bases
(18) and (19) are given by relationships (15)). At R >
R0, energy El(R) was calculated with the asymptotic
expression

(23)

The diagonal matrix elements for singlet states (18),
El(R) = Hll(R), are shown in Fig. 1, where the dashed
line is drawn for the energies of the two-electron states
describing the channels of one-electron capture (b, b')
into the triplet states of Bi3+ ions (6s6p). The energies
of states Ψ2,3 and Ψ4,5 shown in Fig. 1 are shifted by
−0.07 and –0.27 a.u. so that the resonance defects for
channels (a, a'), (b, b'), and (c, c') coincide with the val-
ues obtained by atomic calculations.

At R > R0, off-diagonal matrix elements Hlk(R) of
potential couplings were calculated by the extrapola-
tion formulas

(24)

Coefficients βlk entering into (24) were determined
by the least-squares fit of the matrix elements of potential
couplings obtained by (24) to the values calculated for
nucleus spacing R varying between 12 and 30 a.u. The
matrix elements of potential couplings for singlet colli-
sions (1) are demonstrated in Fig. 2 (the dashed lines in
the inset show Hlk(R) calculated by formulas (24)).

The matrix elements of radial couplings between
functions Ψl and Ψk, which enter into close-coupling
equations (10), are expressed (up to terms quadratic in
small parameters S13 and S24) through the linear combi-
nations of radial couplings 〈6sσ|d/dR|7dσ〉 and
〈7pσ|d/dR|8fσ〉 between single-electron SDMOs (13),
which were calculated with the program package [10].

The nonzero matrix elements of radial couplings 

and  between the singlet and triplet basic states are
shown in Fig. 3.

Detailed calculations revealed that, for the collision
energies we are interested in, the two-electron states are
occupied mostly via potential interaction.

For given collision energy Ec, the cross sections of

single-electron charge transfer, , and excitation,
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1
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m

, were calculated as

(25)
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Fig. 1. Energies El(R) of two-electron states Ψl(r1, r2; R) for

singlet Bi4+(6s) + Bi4+(6s) collisions (reactions 1a, 1c) (on
the right, the limits of Ψl at R  ∞ are written):
(1) entrance channel Ψ1, (2) charge transfer channels Ψ2
and Ψ3 (a, a'), (3) excitation channels Ψ4 and Ψ5 (c, c'), and
(4) charge transfer channels Ψ2 and Ψ3 (b, b') in triplet col-
lisions (reaction 1b).
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Fig. 2. Matrix elements of potential couplings Hlk between
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H23 = H25, (4) H24 = H35, (5) H25 = H34, and (6) H45 = H34.
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Here, (ρ, Ec) and (ρ, Ec) are the probability
amplitudes (see (22)) for transition from initial state
Ψ1(r1, r2) to final states Ψ2(r1, r2) and Ψ4(r1, r2)
obtained by solving close-coupling equations (10) writ-
ten in the basis of singlet (m = 1) and triplet (m = 3)
quasi-molecular states. For the probability amplitudes

calculated, the relationships (ρ, Ec) = (ρ, Ec) and

(ρ, Ec) = (ρ, Ec) are valid.

The total cross sections of single-electron charge
transfer, Σtr, and single-electron excitation of an inci-
dent ion, Σexc, were calculated as a sum of the statisti-
cally weighted charge-transfer and excitation cross sec-
tions calculated for the singlet and triplet channels,

The calculated sections (Fig. 4) depend on the colli-
sion energy only slightly. The cross sections of charge
transfer into the singlet, 6s2, and triplet, 6s6p, states of
Bi3+ ions vary in the ranges (1.2–1.9) × 10–17 and (0.3–
1.0) × 10–18 cm2, respectively; cross sections
σ1(6pA6sB) and σ3(6pA6sB), in the ranges (0.6–0.8) ×
10–16 and (2.2–2.8) × 10–16 cm2, respectively. The pro-
cess of charge transfer into the Bi3+(6s2) state is a major
contributor to total cross section Σtr of single-electron
charge transfer in Bi4+(6s)–Bi4+(6s) collisions.

CROSS SECTIONS OF SINGLE-ELECTRON 
AND RESONANCE CHARGE TRANSFER 

IN Bi4+(6s)–Bi4+(6p) COLLISIONS

Collision between two Bi4+ ions, one in the ground
and the other in the metastable state, was calculated for
the singlet and triplet entrance channels in the basis of
six (three even and three odd) two-electron states

(r1, r2; R) taken from Table 3,

(26)

and in the basis of four (two even and two odd) two-

electron states (r1, r2; R) taken from Table 4,

(27)

To solve close-coupling equations (10) in the basis
of singlet, (26), and triplet, (27), states, it is necessary

to set initial conditions imposed to coefficients 
multiplying even and odd basic functions in expansion (8).
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At the zero time, t  –∞ (R  ∞), the quasi-

molecule is in state Ψ1(r1, r2) with energy ,

(28)

In the collisions of interest, function Ψ1(r1, r2)
describes the state of the system when one electron is
near nucleus ZA in state 6s and the other is near nucleus
ZB in state 6p. Using atomic limits (17) of functions

(r1, r2; R) and  listed in Tables 3 and 4, we find
that function Ψ1(r1, r2) for singlet and triplet collisions
(2) has the form

(29)

Substituting expressions (8) and (29) into (28), we
find that, at t  –∞,

(30)

with regard to the orthogonality of functions  and

.

For the singlet channel, phases  have the form

where  = lim (R)|R → ∞ and (R) are the matrix

elements of 〈 |H| 〉. For the triplet channel, the
respective expressions are similar.

Ẽ1

Ψ̃ r1 r2 t, ,( ) t ∞–→ Ψ1 r1 r2,( ) iẼ1t–( ).exp
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g u, Ψ1
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The even and odd states of a homonuclear quasi-
molecule are not coupled, since the electron coordinate
system is placed in the middle of the nuclear spacing,
and so set (10) of close-coupling equations splits into
two independent sets of ordinary differential equations

in coefficients  and  with initial conditions (30).
Coefficients cj appearing in initial conditions

to the set of close-coupling equations are found using
the TANGO program package [11]. From the linearity
of the close-coupling equations, it follows that

(31)

Using the limits of functions  and  at
R  ∞ (Tables 3 and 4), we can find wave functions
Ψk(r1, r2) (see Tables 5 and 6) that describe the states of
the system at t  ∞ corresponding to the singlet and
triplet channels k = (1a)–(1c) in Bi4+(6s) + Bi4+(6p) col-
lisions,

(32)

With regard to relationships (31) and (32), the prob-
ability amplitude for transition from state Ψ1(r1, r2) to

final state Ψk(r1, r2) with energy ,

is expressed through calculated quantities  as fol-
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Table 5.  Wave functions Ψk describing the final states of the system in singlet collisions (2) and the probability amplitudes
for transition to these states

ZA ZB (k) Ψk

Bi3+(6s6p) + Bi5+ (a)

Bi5+ + Bi3+(6s6p) (a')

Bi3+(6s2) + Bi5+ (b)

Bi5+ + Bi3+(6s2) (b')

Bi4+(6p) + Bi4+(6s) (c)
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lows:

(33)

where

and  and  are the solutions to the set of close-
coupling equations written in the basis of singlet, (26),
and triplet, (27), states. For the singlet channel, phases

bk
m ρ Ec,( )
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uTi

u+( )/ 2

λk
g
T j

g λk
u
T j

u
+( )/ 2,⎩

⎨
⎧

=

Ti
g u, ci

g u, ∞( ) iνi
g u,–( ),exp=

T j
g u,

c j
g u, ∞( ) iν j

g u,–( )exp=

ci
g u, c j

g u,

 have the form

where  = lim (R)|R → ∞ and (R) are the

matrix elements of 〈 |H| 〉. For the triplet chan-
nel, the respective expressions are similar.

The partial cross sections of occupation of the final
singlet (m = 1) and triplet (m = 3) states in reactions (2)
were calculated by the formulas

The computational formulas for transition probabil-

ity amplitudes  are given in Tables 5 and 6.

The matrix elements of potential and radial cou-
plings between bases (26) and (27), which enter into the
close-coupling equations, were calculated with the pro-
gram package described in [10]. Diagonal matrix ele-

ments (R) of two-electron Hamiltonian that were
calculated for the singlet set of basic states (26) are
shown in Fig. 5.

Figure 6 demonstrates the statistically weighted par-
tial cross sections of single-electron charge transfer into
the singlet (channels a and a' in Table 5) and triplet
(channels a, a' in Table 6) states of Bi3+(6s6p) ions,

(34)

(35)

and also the cross sections of resonance charge transfer
for the singlet and triplet entrance channels,

(36)
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Table 6.  Wave functions Ψk describing the final states of the system in triplet collisions (2) and the probability amplitudes
for transition to these states

ZA ZB (k) Ψk

Bi3+(6s6p) + Bi5+ (a)

Bi5+ + Bi3+(6s6p) (a')

Bi4+(6p) + Bi4+(6s) (c)
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(the partial cross sections of single-electron capture

into the Bi3+(6s2) states,  and , are three orders of

magnitude smaller than  and  and are therefore
omitted in Fig. 6). It follows from Fig. 6 that, for both
the singlet and triplet entrance channels, the partial
cross sections of occupation of the 6s6p states in the
incident ion, σ(6sA6pA), and in the target ion, σ(6sB6pB),
differ insignificantly at low collision energies. As the
energy grows, the respective curves diverge, oscillating
in antiphase. The sum of the cross sections of single-
electron capture into the Bi3+6s6p singlet states
depends on the collision energy only slightly, while for
the triplet states, it grows with energy, remaining
smaller than the cross section of single-electron capture
into the singlet states by one order of magnitude.

σb
1 σb'

1

σa
1 σa'

1

The total cross section of single-electron charge
transfer in Bi3+(6s) + Bi4+(6p) collisions, Σtr, was calcu-
lated as a sum of the statistically weighted cross sec-
tions of single-electron charge transfer for the singlet,
(34), and triplet, (35), entrance channels,

Figure 7 compares the charge transfer total cross
sections calculated for two ground-state Bi4+ ions (reac-
tions 1) and for two Bi4+ ions one of which is in the
ground and the other in the excited (metastable) state
(reactions 2) with experimental data [2]. The depen-
dences of the charge transfer cross sections on the col-
lision energy are in qualitative agreement with the data
points; however, the absolute values of the charge trans-
fer cross sections for Bi4+(6s)–Bi4+(6s) collisions (reac-
tions 1) are roughly twice as low as the experimental
data. The charge transfer total cross section for
Bi4+(6s)–Bi4+(6p) collisions (reactions 2) is, as
expected, higher than the charge transfer total cross
section for collisions between the ground-state ions.

The dashed line in Fig. 7 refers to the charge transfer
total cross section in the case when the fractions of
reactions 1 and 2 are 0.59 and 0.41, respectively (such
values of the fractions were selected by comparing the
total theoretical cross section with the sum of the exper-
imental cross sections for all data points in Fig. 7). Such
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Fig. 6. Statistically weighted cross sections of single-elec-
tron and resonance charge transfer in Bi4+(6s)–Bi4+(6p)
collisions (reactions 2): (a) partial, σ(6sA6pA)3P and

σ(6sB6pB)3P, and total cross sections of single-electron

charge transfer into the triplet Bi3+(6s6p) states (channels a
and a', Table 6); (b) partial, σ(6sA6pA)1P and σ(6sB6pB)1P,
and total cross sections of single-electron charge transfer
into the singlet Bi3+(6s6p) states (channels a and a', Table 5);
and (c) cross sections of resonance charge transfer,
σ(6pA6sB)1P and σ(6pA6sB)3P, for the singlet (channel c,
Table 5) and triplet (channel c, Table 6) entrance channels.
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weighted average charge transfer cross section for fractions
of reactions 1 and 2 of 0.59 and 0.41, respectively.
(�) Charge transfer total cross section obtained in crossed-
beam experiments [2].
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a proportion implies that the fraction of metastable ions
amounts to 20% in either of crossed beams.

CONCLUSIONS
The cross sections of single-electron charge transfer

and 6s  6p electronic excitation in collisions
between ground-state Bi4+(6s) ions and the cross sec-
tions of charge transfer in collisions between Bi4+ ions
in the ground (6s) and metastable (6p) states were cal-
culated by solving close-coupling equations written in
the basis of two-electron quasi-molecular states.

For the triplet reaction channel, the cross section of
6s  6p excitation for a ground-state Bi4+(6s) ion col-
liding with another ground-state Bi4+(6s) ion is roughly
three times as large as that for the singlet reaction chan-
nel.

The dependence of the charge transfer cross sections
on the orientation of the electron spins of colliding ions
was studied. For the collision energy interval 5–75 keV
in the center-of-mass coordinate system (the relative
velocity of colliding ions is ~0.1 a.u.), the processes of
single-electron charge transfer into the singlet Bi3+(6s2)
states (reactions 1) and into the singlet Bi3+(6s6p) states
(reactions 2) dominate in Bi4+(6s)–Bi4+(6s) collisions
(reactions 1) and in Bi4+(6s)–Bi4+(6p) collisions (reac-
tions 2), respectively. The cross section of charge trans-
fer in reactions 2 is roughly three times as large as that
in reactions 1.

Reliable data for charge transfer and electronic exci-
tations in collisions between heavy four-charged bis-
muth ions in the kiloelectronvolt range of collision
energies are obtained for the first time. As was noted in
[2], theoretical results for such collisions [12] disagree
with experimental data even qualitatively. The results
reported in [12] were obtained in the Oppenheimer–
Brinkman–Kramers approximation, with (impor-
tantly!) the Bi4+–Bi4+ two-electron quasi-molecule con-
sidered as a system with one active electron, which was
described in terms of hydrogen-like wave functions
with bare effective charges of the projectile and target.

The data for the charge transfer cross sections
obtained in this work may be useful, specifically, for

estimating particle losses in relativistic ion beams due
to a change in the charge state of the ions colliding with
each other in the beam because of its betatron oscilla-
tions.
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