ВЛИЯНИЕ РАДИАТИВНОЙ НАКАЧКИ НА НАСЕЛЕННОСТЬ ВРАЩАТЕЛЬНЫХ УРОВНЕЙ МОЛЕКУЛ НО В ДИФФУЗНЫХ МОЛЕКУЛЯРНЫХ ОБЛАКАХ МЕЖЗВЕЗДНОЙ СРЕДЫ

© 2020 г. В. В. Клименко^{1*}, А. В. Иванчик¹

¹ Физико-технический институт им. А.Ф. Иоффе, Санкт-Петербург, Россия Поступила в редакцию 14.03.2020 г. После доработки 14.03.2020 г.; принята к публикации 24.03.2020 г.

Выполнен теоретический расчет влияния радиативной накачки на населенности вращательных уровней основного колебательного состояния молекул HD, находящихся в условиях холодной фазы межзвездной среды. При анализе учитывались два основных механизма возбуждения молекул: (i) столкновения с атомами и молекулами межзвездной среды, (ii) радиативная накачка ультрафиолетовым фоном межзвездного излучения. Определены коэффициенты радиативной накачки Γ_{ij} , соответствующие среднему галактическому фону ультрафиолетового излучения в модели Дрейна. Изучено влияние эффекта самоэкранирования молекул на величины коэффициентов радиативной накачки. Показано, что населенность первого вращательного уровня HD (J=1) определяется в основном радиативной накачкой, а не столкновениями, если тепловое давление газа $p_{\rm th} \leq 10^4 \left(\frac{I_{\rm LW}}{1}\right) \ {\rm K \ cm}^{-3}$ и лучевая концентрация $\log N({\rm HD}) < 15$. В таких облаках относительная населенность уровней молекул HD N(J=1)/N(J=0) оказывается более чувствительной к величине интенсивности УФ-фона, чем относительная населенность уровней тонкой структуры атомарного углерода CI. Таким образом, анализ относительной населенности уровней молекул HD может стать важным дополнительным источником информации о физических условиях в межзвездной среде как в нашей Галактике, так и формирующихся галактиках ранней Вселенной.

Ключевые слова: межзвездная среда, молекулярные облака, ранние галактики, спектры квазаров.

DOI: 10.31857/S0320010820040075

1. ВВЕДЕНИЕ

Молекулы HD являются следующими по распространенности 1 во Вселенной после молекул H_2 . Их концентрация в холодной фазе нейтральной межзвездной среды (МЗС) нашей Галактики примерно на 5-6 порядков ниже концентрации молекулярного водорода (Сноу и др., 2008). Линии молекул HD. соответствующие электронноколебательно-вращательным переходам, попадают в ультрафиолетовый (УФ) диапазон длин волн, поэтому впервые они были обнаружены в нашей Галактике лишь в наблюдениях космической обсерватории Copernicus (Спитцер и др., 1973, 1974), имевшей УФ-телескоп, и затем в наблюдениях орбитального космического телескопа FUSE (Лакур и др., 2005). К настоящему времени линии молекул HD обнаружены в 41 абсорбционном спектре межзвездной среды, просвеченной яркими звездами нашей Галактики (Сноу и др., 2008).

В наблюдениях галактик ранней Вселенной за счет космологического красного смещения, z, УФлинии HD попадают в оптический диапазон, $\lambda^{obs} = \lambda^{em}(1+z)$, и могут быть задетектированы наземными телескопами. Впервые абсорбционные линии HD были обнаружены в спектре квазара Q 1232+082 в 2001 г. (Варшалович и др., 2001). В настоящий момент в спектрах квазаров идентифицировано около 20 абсорбционных систем HD в демпфированных лайман-альфа (DLA) системах с z > 1.7 (см., например, Иванчик и др., 2015; Косенко, Балашев, 2018).

Относительная распространенность молекул HD/H_2 исследовалась в работах Ле Пети и др. (2002), Лисэт (2015), Иванчик и др. (2015), Балашев, Косенко (2020). В этих работах отмечалось, что отношение HD/H_2 является индикатором физических условий в холодной фазе M3C (плотности газа, интенсивности фона космических

^{*}Электронный адрес: slava.klimenko@gmail.com

¹ Приблизительно такой же, как у HD, распространенностью обладают молекулы CO.

лучей и УФ-излучения, содержания и свойств пыли). Дополнительным каналом информации о физических условиях в МЗС может быть анализ населенностей вращательных уровней молекул HD основного колебательного состояния. Подобно молекуле H₂, молекула HD имеет систему вращательно-колебательных уровней, которые заселяются столкновениями с атомами и молекулами M3C (в основном H, He, H_2 и e^-), а также радиативной накачкой через вышележащие электронные уровни. При этом есть существенное различие в релаксационной динамике молекул HD и H₂: благодаря более высокой симметрии молекулы H_2 , время жизни возбужденных состояний в ней на порядки больше аналогичного времени в HD. Поэтому линии переходов молекулярного водорода в спектрах квазаров уверенно детектируются для большого числа возбужденных вращательных уровней J = 2 - 8 (Балашев и др., 2017) (J == 0 и J = 1 — основные состояния пара- и орто- H_2). В то время как для молекул HD до сих пор удалось обнаружить лишь два случая переходов и только с первого возбужденного вращательного уровня J=1 (переходы с уровней $J\geq 2$ для HD пока наблюдать не удавалось). Они были зарегистрированы в двух абсорбционных системах, наблюдавшихся в спектрах квазаров Ј 0812+ +3208 с $z_{\rm abs}=2.626$ (Балашев и др., 2010) и Ј 0843+0221 с $z_{\rm abs}=2.786$ (Балашев и др., 2017). Анализ относительной населенности уровней НО N(J=1)/N(J=0) позволил определить значение концентрации газа $n = 240 \,\mathrm{cm}^{-3}$ в J 0812 ++3208А (Балашев и др., 2010; Лисэт, 2015) и $n = 260 - 380 \,\mathrm{cm}^{-3}$ в Ј 0843 + 0221 (Балашев и др., 2017). В этих оценках авторы пренебрегали влиянием радиативной накачки, предположив, что вследствие высокой лучевой концентрации молекул УФ-излучение будет экранировано в линиях HD.

В данной работе представлены результаты расчета коэффициентов радиативной накачки вращательных уровней HD. Определен диапазон физических условий в МЗС и лучевых концентраций молекул HD, при которых радиативная накачка вносит существенный вклад в населенности вращательных уровней HD. Описание расчета коэффициентов радиативной накачки приведено в разделе 2. В разделе 3 представлен расчет баланса населенностей уровней HD для набора различных физических условий с учетом эффекта самоэкранирования. В разделе 4 выполнено сравнение относительной населенности уровня $\mathrm{HD}\ J=1\ \mathrm{c}\ \mathrm{дру}$ гими индикаторами физических условий, а также выполнено сравнение оценок физических условий с использованием HD и CI в двух молекулярных

облаках в DLA системах с большими красными смещениями.

2. РАСЧЕТ РАДИАТИВНОЙ НАКАЧКИ

Структура уровней молекулы HD подобна структуре уровней молекулы H_2 , однако имеется и существенное различие: вследствие наличия у молекулы HD дипольного момента, переходы между уровнями с $\Delta J = \pm 1$ разрешены, и большее число уровней оказывается взаимосвязано в радиативном каскаде. Следуя описанию расчета радиативной накачки молекул Н₂ (Блек, Далгарно, 1976), нами выполнен расчет радиативной накачки вращательных уровней молекул НО. Под действием УФизлучения молекулы HD из основного электронного состояния $(X^1\Sigma_g^+)$ переходят в возбужденные электронные состояния ($B^1\Sigma_u$ и $C^1\Pi_u$) и затем релаксируют на вращательно-колебательные уровни основного состояния (производя впоследствии вращательно-колебательный каскад).

2.1. Вращательно-колебательный каскад для уровней основного электронного состояния

Основными параметрами, описывающими перераспределение населенностей уровней при релаксации в основное электронное состояние, являются факторы каскадной эффективности (cascade efficiency factors) $a(\nu_0,J_0;J)$ — которые описывают вероятности заселения вращательного уровня J основного колебательного состояния $\nu=0$ путем серии спонтанных переходов из возбужденного колебательно-вращательного состояния (ν_0,J_0) . Для расчета $a(\nu_0,J_0;J)$ использовалась схема, описанная в работе Блека и Далгарно (1976).

Предположим, что некоторый уровень (ν_0, J_0) заселяется с постоянным темпом $Q(\nu_0, J_0)$ $[\mathrm{cm}^{-3}\mathrm{cek}^{-1}]$, тогда равновесная населенность уровня (ν_0, J_0) определяется следующим образом:

$$n(\nu_0, J_0) = Q(\nu_0, J_0) / A(\nu_0, J_0), \tag{1}$$

ΓД€

$$A(\nu_0, J_0) = \sum_{\nu''=0}^{\nu_0} \sum_{J''=0}^{J_{\text{max}}} A(\nu_0, J_0; \nu'', J'') [c^{-1}] \quad (2)$$

означает полную вероятность спонтанных переходов с уровня (ν_0,J_0) на различные уровни основного электронного состояния. Вероятности спонтанных дипольных и квадрупольных переходов $A(\nu_0,J_0;\nu'',J'')$ для вращательно-колебательных уровней основного электронного состояния молекул HD были рассчитаны в работе Абгралл, Руеф, Виала (1982) для колебательных уровней

 $\nu \leq 17$ и вращательных уровней $J \leq J_{\max} = 13$. В настоящей работе в расчетах учитывались уровни переходов с $J \leq J_{\max} = 13$ и $\nu \leq 13$. Это оправдано тем, что в молекулярных облаках, при характерных физических условиях, населенности вышележащих уровней оказываются пренебрежимо малы, и их дальнейший учет не влияет на значения коэффициентов радиативной накачки основного колебательного уровня. Равновесные населенности нижележащих уровней $(\nu, J) < (\nu_0, J_0)$ определяются из системы уравнений:

$$n(\nu, J)A(\nu, J) =$$

$$= \sum_{\nu''=\nu}^{\nu_0} \sum_{J''=0}^{J_{\text{max}}} n(\nu'', J'')A(\nu'', J''; \nu, J).$$
(3)

Положив темп заселения единичным $Q(\nu_0,J_0)=1$ см $^{-3}$ с $^{-1}$, рассчитаем факторы каскадной эффективности $a(\nu_0,J_0;J)$, которые описывают темп заселения вращательных уровней основного колебательного состояния $(\nu=0,J)$ за счет переходов с вышележащих колебательно-вращательных уровней с $\nu\geq 1$, которые заселялись в ходе каскада из начального состояния (ν_0,J_0) .

$$a(\nu_0, J_0; J) =$$

$$= \sum_{\nu=1}^{\nu_0} \sum_{J''=0}^{J_{\text{max}}} n(\nu'', J'') A(\nu'', J''; 0, J).$$
(4)

Поскольку темп заселения постоянный, должно выполняться условие нормировки: число молекул, появляющихся в единицу времени на возбужденном уровне (ν_0, J_0) , равно числу молекул, приходящих на уровни основного колебательного состояния:

$$\sum_{J=0}^{J_{\text{max}}} a(\nu_0, J_0; J) = Q_0 = 1 \text{ cm}^{-3} \text{c}^{-1}.$$
 (5)

Значения $a(\nu_0,J_0;J)$ были рассчитаны для каждой пары (ν_0,J_0) основного электронного состояния $(\nu_0=1..13,J_0=0..J_{\max})$ и приведены в табл. 1 (для первых четырех колебательных уровней).

2.2. Коэффициенты радиативной накачки $\Gamma(J_i,J_j)$

Для описания доли молекул на основном колебательном уровне $\nu=0$, перешедших из состояния $(\nu=0,J_i)$ в состояние $(\nu=0,J_j)$ в процессе радиативной накачки введем коэффициенты $\Gamma(J_i,J_j)$:

$$\Gamma(J_i, J_j) = \sum_{\nu_0 = 1}^{13} \sum_{J_0 = 0}^{J_{\text{max}}} Q^{J_i}(\nu_0, J_0) \times$$
 (6)

$$\times a(\nu_0, J_0; J_j) + Q^{J_i}(\nu = 0, J_j),$$

где $Q^{J_i}(\nu_0,J_0)$ описывает темп заселения уровней основного электронного состояния (ν_0,J_0) за счет спонтанных 2 переходов с уровней возбужденных электронных состояний молекулы HD и определяется следующим образом:

$$Q^{J_i}(\nu_0, J_0) =$$

$$= \sum_{B,C} \left[\sum_{\nu'=0}^{40} \sum_{J'=0}^{J'_{\text{max}}} \frac{R(0, J_i; \nu', J')}{A^{tot}(\nu', J')} A(\nu', J'; \nu_0, J_0) \right],$$
(7)

где $\frac{R(0,J_i;\nu',J')}{A^{tot}(\nu',J')}=\frac{n(\nu',J')}{n(0,J_i)}$ — относительные равновесные населенности колебательно-вращательных уровней (ν',J') состояний (B и C) при заселении с уровня основного электронного состояния $(0,J_i)$, $R(0,J_i;\nu',J')$ — скорость возбуждения за счет абсорбции УФ-излучения, $A^{tot}(\nu',J')=A_c(\nu',J')+\sum_{\nu_0,J_0}A(\nu',J';\nu_0,J_0)$ — полная вероятность пере-

хода молекул HD с уровней (ν',J') возбужденных состояний в континуум и на вращательно-колебательные уровни (ν_0,J_0) основного электронного состояния (Абгралл, Руефф, 2006). Здесь и далее индексом ' обозначены населенности возбужденных электронных состояний HD, нижним индексом 0 — уровни основного электронного состояния.

Скорость фотоабсорбции определяется следующим выражением:

$$R(\nu'', J''; \nu', J') = \int_{0}^{\infty} \sigma_{ik}(\nu) c u_{\nu}(\nu) d\nu =$$

$$= f_{ik} \frac{\sqrt{\pi}e^{2}}{mc} \int_{0}^{\infty} H(a, x) c u_{\nu}(\nu) d\nu \simeq$$

$$\simeq f_{ik} \frac{\pi e^{2}}{m} u_{\nu}(\nu_{ik}),$$
(8)

где f_{ik} — сила осциллятора перехода между состояниями (ν'',J'') и (ν',J') , $u_{\nu}(\nu_{ik})$ — спектральная плотность УФ-излучения в облаке на длине волны перехода $\left[\frac{\text{фотонов}}{\text{см}^3 \text{Гц}}\right]$, $H(a,x)=\frac{a}{\pi}\int_{-\infty}^{+\infty}\frac{\exp(-y^2)}{(x-y)^2+a^2}dy$ — функция Фойта с параметрами $a=\Delta\nu_R/\Delta\nu_D,\ x=\frac{c}{b}\left(\frac{\nu-\nu_{ik}}{\nu_{ik}}\right)$. В оптически тонком случае значение интеграла равно значению функции на частоте перехода. Таким образом, скорость фотоабсорбции оказывается пропорциональна плотности фотонов УФ-излучения в

² Скорость вынужденных переходов значительно ниже скорости спонтанных, и их учетом можно пренебречь.

Таблица 1. Факторы каскадной эффективности $a(\nu_0, J_0; J)$ заселения вращательных уровней J основного колебательного состояния $\nu=0$ молекул HD. Приведены данные для первых четырех колебательных уровней

	T	$\nu = 0, J$											
ν_0	J_0	0	1	2	3	4	5	6	7	8	9	10	
1	0	0.00000	0.98813	0.01187	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
1	1	0.50542	0.00683	0.48193	0.00582	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
1	2	0.00868	0.68212	0.00909	0.29625	0.00386	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
1	3	0.00031	0.02783	0.77772	0.01348	0.17807	0.00258	0.00000	0.00000	0.00000	0.00000	0.00000	
1	4	0.00002	0.00205	0.06066	0.81772	0.01552	0.10233	0.00170	0.00000	0.00000	0.00000	0.00000	
1	5	0.00000	0.00025	0.00732	0.10166	0.82001	0.01433	0.05534	0.00109	0.00000	0.00000	0.00000	
1	6	0.00000	0.00004	0.00125	0.01738	0.14244	0.79907	0.01109	0.02804	0.00069	0.00000	0.00000	
1	7	0.00000	0.00001	0.00028	0.00386	0.03168	0.17934	0.76388	0.00758	0.01295	0.00043	0.00000	
1	8	0.00000	0.00000	0.00008	0.00104	0.00856	0.04847	0.20742	0.72433	0.00461	0.00521	0.00026	
1	9	0.00000	0.00000	0.00002	0.00033	0.00270	0.01527	0.06537	0.22859	0.68353	0.00258	0.00161	
1	10	0.00000	0.00000	0.00001	0.00012	0.00096	0.00543	0.02326	0.08133	0.24296	0.64456	0.00137	
2	0	0.30069	0.40525	0.28838	0.00566	0.00003	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
2	1	0.17862	0.50603	0.22670	0.08687	0.00178	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	
2	2	0.21897	0.23825	0.34929	0.16015	0.03262	0.00072	0.00000	0.00000	0.00000	0.00000	0.00000	
2	3	0.00847	0.35223	0.26761	0.24523	0.11438	0.01178	0.00029	0.00000	0.00000	0.00000	0.00000	
2	4	0.00043	0.02722	0.44704	0.28251	0.15811	0.08070	0.00387	0.00011	0.00000	0.00000	0.00000	
2	5	0.00004	0.00261	0.05961	0.50253	0.28344	0.09471	0.05584	0.00117	0.00004	0.00000	0.00000	
2	6	0.00000	0.00035	0.00896	0.10051	0.52455	0.27436	0.05283	0.03808	0.00033	0.00001	0.00000	
2	7	0.00000	0.00006	0.00168	0.02092	0.14154	0.52238	0.25987	0.02778	0.02566	0.00010	0.00000	
2	8	0.00000	0.00001	0.00039	0.00506	0.03766	0.17767	0.50509	0.24311	0.01379	0.01719	0.00004	
2	9	0.00000	0.00000	0.00011	0.00142	0.01106	0.05710	0.20486	0.48024	0.22730	0.00659	0.01133	
2	10	0.00000	0.00000	0.00003	0.00046	0.00365	0.01967	0.07695	0.22583	0.45512	0.21504	0.00324	
3	0	0.31352	0.32714	0.32114	0.03735	0.00084	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	
3	1	0.15907	0.52005	0.20309	0.11003	0.00760	0.00017	0.00000	0.00000	0.00000	0.00000	0.00000	
3	2	0.19438	0.26521	0.37865	0.11198	0.04765	0.00208	0.00004	0.00000	0.00000	0.00000	0.00000	
3	3	0.08035	0.30363	0.24546	0.28275	0.06696	0.02022	0.00061	0.00001	0.00000	0.00000	0.00000	
3	4	0.00490	0.15290	0.37504	0.21850	0.19898	0.04143	0.00804	0.00020	0.00000	0.00000	0.00000	
3	5	0.00033	0.01669	0.22275	0.41400	0.18316	0.13334	0.02669	0.00296	0.00007	0.00000	0.00000	
3	6	0.00003	0.00195	0.03879	0.28083	0.42467	0.14925	0.08554	0.01793	0.00098	0.00003	0.00000	
3	7	0.00000	0.00029	0.00682	0.06917	0.32097	0.41451	0.12186	0.05364	0.01244	0.00028	0.00001	
3	8	0.00000	0.00005	0.00140	0.01643	0.10248	0.34411	0.39224	0.10140	0.03295	0.00888	0.00007	
3	9	0.00000	0.00001	0.00034	0.00430	0.03050	0.13415	0.35216	0.36469	0.08745	0.02002	0.00638	
3	10	0.00000	0.00000	0.00010	0.00129	0.00973	0.04814	0.16214	0.35466	0.34019	0.07683	0.00694	

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 46 $\,$ № 4 $\,$ 2020

Таблица 1. Окончание

ν_0	J_0	$\nu = 0, J$											
		0	1	2	3	4	5	6	7	8	9	10	
4	0	0.25095	0.40008	0.27775	0.06817	0.00300	0.00006	0.00000	0.00000	0.00000	0.00000	0.00000	
4	1	0.21629	0.40000	0.28365	0.08385	0.01567	0.00053	0.00001	0.00000	0.00000	0.00000	0.00000	
4	2	0.15787	0.34428	0.31837	0.12916	0.04621	0.00401	0.00011	0.00000	0.00000	0.00000	0.00000	
4	3	0.11430	0.25709	0.30199	0.23724	0.06699	0.02128	0.00108	0.00003	0.00000	0.00000	0.00000	
4	4	0.02680	0.20557	0.30149	0.25207	0.17001	0.03422	0.00954	0.00029	0.00001	0.00000	0.00000	
4	5	0.00215	0.06094	0.28266	0.32037	0.19427	0.11776	0.01761	0.00415	0.00009	0.00000	0.00000	
4	6	0.00018	0.00838	0.10774	0.35115	0.32582	0.14092	0.05492	0.00955	0.00132	0.00002	0.00000	
4	7	0.00002	0.00111	0.02083	0.15014	0.36930	0.29852	0.10082	0.05310	0.00546	0.00069	0.00001	
4	8	0.00000	0.00018	0.00409	0.04033	0.19056	0.37920	0.27401	0.07275	0.03526	0.00336	0.00027	
4	9	0.00000	0.00004	0.00091	0.01047	0.06441	0.22284	0.37376	0.24868	0.05333	0.02343	0.00213	
4	10	0.00000	0.00001	0.00024	0.00299	0.02096	0.09153	0.24894	0.36606	0.22721	0.03518	0.00687	

среде. Влияние эффекта экранирования в линиях рассмотрено в следующем параграфе.

Для расчета темпа фотоабсорбции мы используем стандартную модель изотропного среднегалактического фона межзвездного УФ-излучения Дрейна (1978). В диапазоне длин волн < 2000 Å, соответствующем длинам волн переходов молекул HD, интенсивность УФ-излучения по числу фотонов [фотонов/сек см² Гц Страд] описывается выражением, приведенным в работе Стернберг и Далгарно (1995):

$$I_{\nu}^{\text{Draine}}(\nu) = \frac{1}{4\pi} \times \left[1.068 \times 10^{-3} \left(\frac{1 \,\text{Å}}{\lambda} \right) - \right. (9)$$
$$-1.719 \left(\frac{1 \,\text{Å}}{\lambda} \right)^{2} + 6.853 \times 10^{2} \left(\frac{1 \,\text{Å}}{\lambda} \right)^{3} \right].$$

В случае изотропного фона спектральная плотность связана с интенсивностью следующим образом: $u_{\nu}=4\pi I_{\nu}/c$, тогда полная плотность излучения в диапазоне (912—1108 Å) равна 6.9×10^{-4} см $^{-3}$. Мы вводим масштабирующий фактор $I_{\rm UV}$, чтобы учитывать более сильные поля излучения, $I_{\nu}=I_{\rm UV}I_{\nu}^{\rm Draine}(\nu)$. Фактор $I_{\rm UV}$ входит линейно в уравнения (6)—(9), поэтому коэффициенты радиативной накачки $\Gamma(J_i,J_j)$ линейно зависят от $I_{\rm UV}$. Значения $\Gamma(J_i,J_j)$, рассчитанные для среднегалактического фонового излучения ($I_{\rm UV}=1$), приведены в табл. 2.

2.3. Эффект самоэкранирования

Известно, что в молекулярных облаках молекулы HD, H₂, так же как и атомарный водород НІ, поглощают УФ-излучение в линиях, тем самым экранируя внутреннюю часть облака от излучения на частотах соответствующих переходов (см., например, Дрейн, Бертолди, 1996; Волктот-Грин, Найман, 2011). В этих работах фактор самоэкранирования рассчитывается как отношение полного темпа диссоциации молекул в глубине облака и на границе облака, $f_{\text{shield}}(N_{\text{HD}}) =$ $=\xi_{\rm diss}(N_{
m HD})/\xi_{
m diss}(N_{
m HD}=0)$, здесь (и далее) N лучевая концентрация, выраженная в cm^{-2} . Диссоциация молекул происходит как процесс, сопутствующий радиативной накачке, так что часть возбужденных молекул релаксирует в континуум (около 15%) и разрушается, а другая часть (около 85%) переходит на возбужденные уровни основного электронного состояния. Таким образом, в результате самоэкранировки темп диссоциации молекул $(\xi_{
m diss})$, как и темп заселения уровней основного состояния $Q^{J_i}(
u_0,J_0)$ ослабляются одинаковым образом. Мы использовали выражение для фактора экранирования, рассчитанное в работе Дрейн и Бертолди (1996), которое дает нулевое экранирование на границе облака, в отличие от аппроксимации, предложенной Волктот-Грин и Найман (2011):

$$f_{\text{shield}}(x, D) = \frac{0.965}{(1 + x/D)^2} + \frac{0.035}{\sqrt{1+x}} \exp\left(-8.5 \times 10^{-4} \sqrt{1+x}\right),$$
(10)

где $x=N({\rm HD})/8.465\times 10^{13}~{\rm cm}^{-2}$ — нормированная лучевая концентрация, $D=b/10^5~{\rm cm~c}^{-1}$ — доплеровский параметр.

В нашей модели молекулярное облако описывается плоско-параллельным слоем, который об-

J_i	J_{j}											
	0	1	2	3	4	5	6	7	8	9	10	
0	0.839	1.323	1.109	0.358	0.077	0.010	0.001	0.000	0.000	0.000	0.000	
1	0.423	1.029	0.772	0.482	0.112	0.018	0.002	0.000	0.000	0.000	0.000	
2	0.374	0.787	0.915	0.481	0.289	0.047	0.006	0.000	0.000	0.000	0.000	
3	0.249	0.665	0.749	0.711	0.312	0.202	0.021	0.002	0.000	0.000	0.000	
4	0.160	0.468	0.711	0.652	0.609	0.220	0.148	0.011	0.001	0.000	0.000	
5	0.095	0.322	0.569	0.713	0.566	0.519	0.161	0.142	0.006	0.000	0.000	
6	0.049	0.202	0.433	0.613	0.664	0.478	0.468	0.117	0.133	0.003	0.000	
7	0.022	0.113	0.298	0.500	0.614	0.630	0.436	0.451	0.099	0.128	0.002	
8	0.008	0.054	0.179	0.374	0.557	0.631	0.611	0.397	0.428	0.087	0.117	
9	0.002	0.021	0.090	0.223	0.388	0.493	0.495	0.425	0.208	0.318	0.004	
10	0.001	0.008	0.038	0.114	0.230	0.326	0.342	0.289	0.256	0.095	0.164	

Таблица 2. Коэффициенты радиативной накачки молекул HD $\Gamma(J_i,J_j)$ $\left[10^{-10}\mathrm{c}^{-1}\right]$, рассчитанные для стандартного среднегалактического УФ-фона в модели Дрейна с $I_{\mathrm{UV}}=1$

лучается однородным фоном межзвездного излучения с обеих сторон. Мы считаем поток излучения однородным и падающим нормально к поверхности облака. Плотность потока с каждой из сторон облака равна $F_{\nu}=2\pi I_{\nu}I_{\rm UV}$. Облако делится на параллельные слои, в каждом из которых рассчитывается плотность УФ-излучения $u_{\nu}(x)$ с учетом экранирования излучения, идущего с каждой из сторон облака:

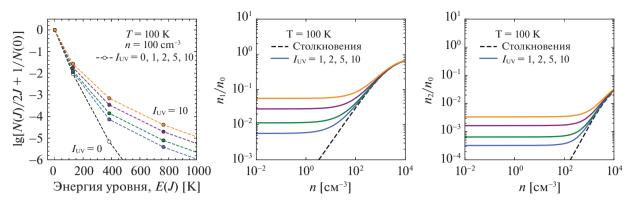
$$u_{\nu}(x) = \frac{2\pi I_{\nu} I_{\text{UV}}}{c} \Big(f_{\text{shield}}[N_{\text{HD}}(x)] + f_{\text{shield}}[N_{\text{HD}}(l_c - x)] \Big), \tag{11}$$

где l_c — размер облака, x — координата вдоль луча зрения (по нормали к слою), $N_{\rm HD}(x)$ — лучевая концентрация молекул на луче зрения между границей облака и исследуемым слоем x. В отсутствие экранирования плотность излучения $u_{\nu}(x)=4\pi I_{\nu}I_{\rm UV}/c$ постоянна и не зависит от x. Таким образом, коэффициенты радиативной накачки $\Gamma(J_i,J_j)$ для молекул в толще облака уменьшаются на фактор

$$f_{\rm sh}(x) = \frac{1}{2} \Big(f_{\rm shield}[N_{\rm HD}(x)] + f_{\rm shield}[N_{\rm HD}(l_c - x)] \Big)$$

$$(12)$$

в сравнении с неэкранированным случаем.


3. РАСЧЕТ БАЛАНСА НАСЕЛЕННОСТЕЙ

В равновесии населенности вращательных уровней молекул HD в основном колебательном состоянии описываются системой линейных уравнений:

$$\sum_{i \neq j} N_i \left(\sum_q n_q k_{ij}^q + A_{ij} + \Gamma_{ij} \right) =$$

$$= N_j \sum_{i \neq j} \left(\sum_q n_q k_{ji}^q + A_{ji} + \Gamma_{ji} \right),$$
(13)

где индексы i, j — номера вращательных уровней HD, q — частицы, участвующие в столкновении (HI, pH2, oH2, He и электроны), n_q — концентрации частиц, k_{ij}^q — столкновительные коэффициенты, являющиеся функциями кинетической температуры. Значения столкновительных коэффициентов частиц с молекулами HD взяты из работ Фловер и др. (2000) и Дикинсон и Ричардс (1975). Концентрации частиц по отношению к полной концентрации водорода ($n_H^{\rm tot} = n_{\rm H} + n_{\rm H2} + n_{\rm H+}$) полагались равными характерным значениям, измеренным в диффузных молекулярных облаках нашей Галактики: $n_{\rm He}/n_H^{\rm tot} = 0.085$ (Асплунд и др. 2009), концентрация электронов $n_e/n_H^{\rm tot} = 10^{-4}$ (в молекулярных облаках, как правило, соответствует распространенности ионизованного углерода,

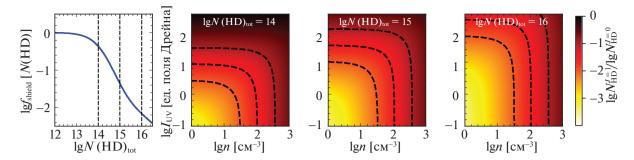
Рис. 1. Относительные населенности вращательных уровней HD J=1 и J=2 по отношению к основному состоянию $n_J/n_0=n(J)/n(J=0)$, рассчитанные для различных физических условий.

 ${\rm n_C/n_H^{tot}}\sim 2\times 10^{-4}\times Z$, где Z — параметр металличности среды), $n_{H_2}/n_H^{tot}=0.2$ (характерная степень молекуляризации газа в облаках с высокой лучевой концентрацией молекулярного водорода ${\rm log}\,N_{H_2}>19$ (см., например, Балашев и др., 2019) отношение орто и пара-водорода полагалось равным равновесному $9\times \exp(-E_{10}/kT_{\rm kin})$.

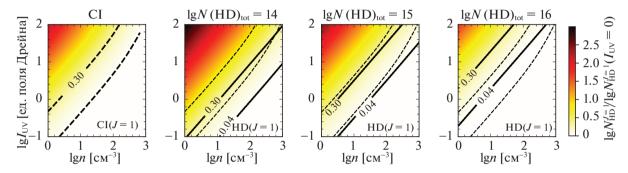
Населенности первого и второго вращательных уровней молекулы HD, как функции концентрации, температуры и интенсивности $У\Phi$ -фона, показаны на рис. 1. Радиативная накачка увеличивает (более чем на 10%) населенность первого вращательного уровня HD с J=1 в молекулярных облаках с тепловым давлением газа M3C

$$p_{\rm th} = nT_{\rm kin} < 10^4 \left(\frac{I_{\rm UV}}{1}\right) {\rm K \, cm^{-3}}.$$
 (14)

Это ограничение может выполняться для диффузных молекулярных облаков в нашей Галактике. Магеллановых облаках, а также в галактиках на больших красных смещениях, которые наблюдаются в поглощении как DLA системы в спектрах квазаров с z = 2 - 4. Оценки теплового давления газа в холодной фазе МЗС, полученные с помощью анализа относительной населенности уровней молекул H_2 и уровней тонкой структуры атомарного углерода СІ, составляют около $10^{3.5}-10^{4.5}~{\rm K~cm}^{-3}$: измерения в нашей Галактике $\log p_{\rm th} = 3.58 \pm 0.18$ (Дженкинс, Трипп, 2011), Большом и Малом Магеллановых облаках (Велти и др., 2016), в DLA системах $\log p_{\rm th} = 4.0 \pm$ $\pm\,0.5$ (см., например, Балашев и др., 2019). При этом интенсивность фонового межзвездного УФизлучения и, следовательно, ограничение на тепловое давление (согласно уравнению (14)), в далеких галактиках может быть выше на порядок величины. Повышенное значение интенсивности межзвездного УФ-излучения в галактиках на $z\sim 2$ частично подтверждается наблюдениями, например, для отдельных DLA систем, представляющих проколы


отдельных галактик (см., например, Волфе, 2003; Нотердам и др., 2007, 2015; Клименко и др., 2016; Балашев и др., 2017).

3.1. Учет самоэкранирования

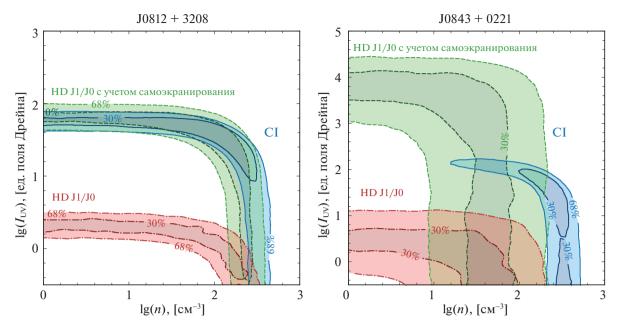

Как было показано в подразделе 2.3, эффект самоэкранирования молекул HD ослабляет темп радиативной накачки в толще облака с коэффициентом $f_{\rm sh}(x)$. Мы рассчитали отношение лучевых концентраций молекул HD на первом и основном вращательных уровнях для различных концентраций газа и интенсивности УФ-фона с учетом эффекта экранирования. Температура газа полагалась равной 100 К, что соответствует характерной температуре в диффузных молекулярных облаках (см., например, Балашев и др., 2019). Результаты показаны на рис. 2. Градиентом цвета показано значение относительной населенности первого вращательного уровня. Контурами показаны линии уровня, соответствующие значениям 1/100, 1/30, 1/10. Таким образом, при лучевых концентрациях $\log N_{
m HD} < 15$ накачка УФ-излучением может вносить значимый вклад в населенность вращательных уровней молекул HD даже при учете эффекта самоэкранирования молекул.

4. ОПРЕДЕЛЕНИЕ ФИЗИЧЕСКИХ УСЛОВИЙ В МОЛЕКУЛЯРНОМ ГАЗЕ

Как было показано выше, населенность первого вращательного уровня HD может служить индикатором физических условий в газе, таких как кинетическая температура, объемная концентрация газа и интенсивность межзвездного излучения в УФдиапазоне. Эти же параметры можно измерять с помощью других индикаторов, например, населенностей уровней тонкой структуры атомов и ионов (Сильва, Вегас, 2002). Наиболее распространенным и используемым индикатором плотности газа

Рис. 2. Левая панель: функция самоэкранирования молекул HD в зависимости от лучевой концентрации вдоль луча зрения. Правые панели: цветом показан логарифм относительного значения населенности уровня HD J=1 (проинтегрированный вдоль луча зрения $N_{\rm HD}(J=1)/N_{\rm HD}(J=0)$) в облаках с различной полной лучевой концентрацией молекул HD в зависимости от концентрации газа и интенсивности УФ-фона. Пунктирной линией показаны линии уровня относительной населенности HD (J=1), соответствующие значениям $N_{\rm HD}(J=1)/N_{\rm HD}(J=0)=1/100,\,1/30,\,1/10.$

Рис. 3. Сравнение чувствительности населенности уровня тонкой структуры углерода CI* и уровня HD J=1 к величине интенсивности УФ-фона и концентрации газа. Расчет выполнен при температуре T=100 К. Пунктирными и сплошными линиями показаны линии уровня, соответствующие изменению населенности уровня CI* и HD (J=1) на 10% и 100% от населенности, созданной только столкновениями (при $I_{\rm UV}=0$). Градиентом цвета показан логарифм величины изменения населенности уровней CI* и HD (J=1). Для молекул HD расчет выполнен для облаков с лучевой концентрацией $\log N({\rm HD})=14,15,16.$


и интенсивности УФ-фона в диффузной холодной фазе МЗС является нейтральный углерод СІ (см., например, обзор абсорбционных систем СІ в нашей Галактике в работе Дженкинс, Трипп, 2011).

Мы сравнили эффективность радиативной накачки (или чувствительность населенности уровней к величине УФ-фона) уровней тонкой структуры углерода (CI*) и первого вращательного уровня $\mathrm{HD}\,(J=1)$ как функцию концентрации газа³. Температура газа полагалась равной 100 K, характерной температуре в холодной фазе МЗС. Результаты сравнения показаны на рис. 3. Линиями уровня показаны значения физических условий, при которых относительная населенность уровня увеличивается на 10% и 100% (или 0.04 и 0.3 единиц в логарифмическом масштабе) от значения населенности, созданной только столкновениями.

Обычно считается, что эффект самоэкранирования сильно подавлет эффективность радиа-

тивной накачки молекул HD. Чтобы проверить это утверждение, мы привели результаты расчета, выполненного для трех значений полной лучевой концентрации молекул HD в облаке $\log N(\mathrm{HD}) =$ = 14, 15, 16. Из-за невысокой лучевой концентрации атомов СІ в молекулярных облаках, эффектом самоэкранирования атомов СІ при вычислении радиативной накачки обычно пренебрегают. Видно, что при лучевой концентрации около $\log N(\mathrm{HD}) <$ ≤ 14 населенность уровня HD (J=1) оказывается в несколько раз более чувствительна к величине интенсивности УФ-фона, чем населенность первого уровня СІ*. Другими словами, влияние радиативной накачки на населенность уровней HD значительно выше, чем на населенность уровней СІ. В этом случае HD являются более хорошим индикатором УФ-фона и более плохим индикатором концентрации газа, в сравнении с СІ. С увеличением N(HD) экранирование молекул подавляет эффективность радиативной накачки. При лучевых концентрациях HD $\log N(\mathrm{HD}) \sim 15$ населенность уровней HD (J=1) и CI* имеет похожую чув-

 $^{^3}$ Населенность второго уровня СІ** имеет примерно такую же чувствительность, как и СІ*.

Рис. 4. Ограничение на концентрацию газа и интенсивности УФ-излучения, полученное с помощью анализа относительной населенности уровня J=1 молекул HD (с учетом и без учета эффекта самоэкранирования) и уровней тонкой структуры CI в DLA системе с z=2.626 в спектре квазара Q 0812+3208 (левая панель) и в DLA системе с z=2.786 в спектре квазара Q 0843+0221 (правая панель). Контурами показана плотность вероятности, соответствующая уровню значимости 30% и 68%. Даже с учетом эффекта самоэкранирования ($\log N({\rm HD})=15.7$ и 17.3 в Q 0812+3208 и Q 0843+0221 соответственно) ограничение по отношению N(J=1)/N(J=0) HD оказывается сравнимо с ограничением, поставленным по уровням тонкой структуры CI.

ствительность к величине УФ-фона. В облаках с большей лучевой концентрацией HD $\log N({\rm HD}) > 15$ радиативная накачка уровня HD (J=1) подавлена.

В то же время, как было показано в разделе 3, верхние вращательные уровни HD с $J \geq 2$ имеют более высокую чувствительность к интенсивности УФ-фона, чем J=1, и могли бы быть хорошим индикатором интенсивности УФ-излучения. Однако на данный момент линии переходов HD с уровней $J \geq 2$ еще не детектировались в абсорбции МЗС в нашей Галактике (см., например, Сноу и др., 2008) и в галактиках с большими красными смещениями (см., например, Иванчик и др., 2015). Измерение населенности уровней HD с J > 2 позволило бы с высокой точностью измерить величину интенсивности УФ в молекулярном облаке. Эта задача может стать возможной с введением в строй будущих обсерваторий, таких как Extremely Large Telescope (ELT) со спектрографом HIRES (Оливе и др., 2018) и Спектр-УФ (Шустов и др., 2018).

В качестве примера мы сравнили ограничения на диапазон физических условий, которые можно получить с использованием молекул HD или атомов СІ. На рис. 4 мы приводим оценку объемной концентрации газа и интенсивности УФ-излучения в двух DLA системах с большими красными смещениями z>2 в спектрах квазаров Q 0812+3208A

(Балашев и др., 2010) и Ј 0843+0221 (Балашев и др., 2017), в которых были найдены линии переходов HD с уровня J = 1. Лучевая концентрация молекул HD равна $\log N({\rm HD}) = 15.70 \pm 0.07$ для Q 0812+3208А и $17.35^{+0.15}_{-0.34}$ для J 0843+0221. Значения лучевых концентраций НО для вращательных уровней приведены в табл. 3. В случае J 0812+3208A, анализ отношения населенностей уровней HD и CI дает одинаковые ограничения на концентрацию и величину УФ-фона. Кинетическая температура газа полагалась равной температуре возбуждения первого вращательного уровня молекул $H_2(T_{01})$. При наличии дополнительных ограничений (см., например, Балашев и др., 2019) эти параметры могут быть однозначно определены. Если предположить, что интенсивность УФ-фона в DLA

Таблица 3. Лучевые концентрации молекул HD на основном и первом вращательных уровнях в DLA системах в спектрах квазаров J 0812+3208 (Балашев и др., 2010) и J 0843+0221 (Балашев и др., 2017)

Параметр	J0812+3208	J0843+0221			
HD(J=0)	$15.70^{+0.07}_{-0.07}$	$17.34^{+0.13}_{-0.37}$			
HD(J=1)	$13.77^{+0.15}_{-0.15}$	$15.87^{+0.72}_{-0.49}$			

системе не превышает более чем в 10 раз интенсивность фонового межзвездного УФ-излучения в нашей Галактике, можно оценить концентрацию газа в молекулярном облаке, $\sim 240~{\rm cm}^{-3}$. С другой стороны, можно поставить верхний предел на величину интенсивности УФ-фона. Данные по СІ и HD дают одинаковое ограничение: $I_{\rm UV} < 60$ ед. поля Дрейна. Это значит, что даже при высокой лучевой концентрации молекул HD влияние радиативной накачки на населенность уровня HD (J = 1) может быть столь же существенно, как для уровней тонкой структуры СІ. Также для сравнения мы привели ограничение на интенсивность УФ-излучения, полученное без учета эффекта самоэкранирования молекул HD. Разница составляет почти полтора порядка, следовательно, НО обладает высокой чувствительностью к величине УФ-фона, и эффект самоэкранирования необходимо учитывать.

В случае системы в спектре Ј 0843+0221 из-за высокой лучевой концентрации НD населенность первого уровня НD определяется только столкновениями. За счет эффекта самоэкранирования темп радиативной накачки подавлен более чем на три порядка. Оценки концентрации газа, полученные с использованием HD и CI, согласуются в пределах статистических ошибок.

5. ЗАКЛЮЧЕНИЕ

Рассмотрено влияние радиативной накачки УФ-излучением на населенность нижних вращательных уровней основного электронного состояния молекул HD, находящихся в условиях диффузной холодной фазы межзвездной среды. Рассчитаны коэффициенты радиативной накачки молекул фоновым УФ-излучением в модели Дрейна. Значения коэффициентов радиативной накачки для первых $11\ (J=0-10)$ вращательных уровней основного колебательного состояния HD приведены в табл. 2.

Показано, что вблизи границы молекулярного облака, когда можно пренебречь эффектом само-экранирования молекул HD, населенность первого вращательного уровня HD с J=1 определяется в основном радиативной накачкой, а не столкновениями, если тепловое давление газа удовлетворяет условию $p_{\rm th} \leq 10^4 \left(\frac{I_{\rm UV}}{1}\right)~{\rm K~cm}^{-3}$. Такие условия соответствуют типичным физическим условиям холодной фазы M3C в нашей Галактике (Дженкинс, Трипп, 2011) и в DLA системах с большими красными смещениями (Балашев и др., 2019). Населенности верхних вращательных уровней HD с $J \geq 2$ практически полностью определяются только радиативной накачкой (вклад столкновительной

накачки не превышает 10%). Измерение населенностей этих уровней позволило бы определить величину интенсивности УФ-фона в молекулярном облаке с высокой точностью.

Рассмотрено влияние эффекта самоэкранирования молекул на эффективность радиативной накачки первого вращательного уровня HD (J == 1). Показано, что в облаках с лучевой концентрацией $\log N({\rm HD}) < 15$ радиативая накачка УФфоном среднегалактической интенсивности ($I_{\rm UV}=$ = 1) может существенно изменять населенность первого уровня HD(J = 1) при концентрациях газа $n < 50 \, {\rm cm}^{-3}$ и температуре около 100 К. Учет дополнительного возбуждения молекул HD может быть важен в задаче расчета охлаждения первичной плазмы за фронтами ударных волн, возникающих в эпоху формирования галактик. Например, ионизирующее излучение первых звезд может увеличить населенности вращательных уровней HD и, как следствие, повысить темп охлаждения первичной плазмы.

Отношение населенностей уровней HD N(J ==1)/N(J=0) в молекулярных облаках можно использовать для оценки физических условий в МЗС — как концентрации газа, так и интенсивности УФ-излучения. При лучевой концентрации $\log N(\mathrm{HD}) < 15$ отношение населенностей уровней HD J1/J0 оказывается более чувствительно к интенсивности УФ-фона и менее чувствительно к значению концентрации газа, в сравнении с чувствительностью населенностей уровней тонкой структуры атомарного углерода (CI^*/CI и CI^{**}/CI). В качестве примера выполнена оценка физических условий в двух DLA системах с большими красными смещениями в спектрах квазаров Q 0812+3208A (log N(HD) = 15.7) и Q 0843+ $+0221 (\log N(HD) = 17.3)$, в которых обнаружены линии переходов HD с J=1 (Балашев и др., 2010, 2017). В системе Q 0812+3208А определена концентрация газа в молекулярном облаке $\sim 240~{\rm cm}^{-3}$ и ограничена интенсивность УФ-излучения, $I_{\rm UV} <$ < 60 ед. поля Дрейна.

Работа выполнена при поддержке Российского научного фонда (грант № 18-12-00301).

СПИСОК ЛИТЕРАТУРЫ

- 1. Абгралл и др. (H. Abgrall, E. Roueff, and Y. Viala), Astron. Astrophys. Suppl. Ser. **50**, 505 (1982).
- 2. Абгралл, Руеф (H. Abgrall and E. Roueff), Astron. Astrophys. **445**, 361 (2006).
- 3. Асплунд М. и др. (М. Asplund, N. Grevesse, A.J. Sauval, and P. Scott), ARA&A, 47, 481 (2009).
- 4. Балашев С.А., Иванчик А.В., Варшалович Д.А., Письма в Астрон. журн. **36**, 803 (2010) [S.A. Balashev, A.V. Ivanchik, and D.A. Varshalovich, Astron. Lett. **36**, 761 (2010)].

- 5. Балашев, Косенко (S.A. Balashev and D.N. Kosenko), MNRAS **492**, L45 (2020).
- 6. Балашев и др. (S.A. Balashev, V.V. Klimenko, P. Noterdaeme, J.-K. Krogager, D.A. Varshalovich, A.V. Ivanchik, P. Petitjean, R. Srianand, et al.), MNRAS 490, 2668 (2019).
- 7. Балашев и др. (S.A. Balashev, P. Noterdaeme, H. Rahmani, V.V. Klimenko, C. Ledoux, P. Petitjean, R. Srianand, A.V. Ivanchik, et al.), MNRAS 470, 2809 (2017).
- 8. Блек, Далгарно (J.H. Black and A. Dolgarno), Astrophys. J. **203**, 132 (1976).
- 9. Варшалович Д.А., Иванчик А.В., Петижан П. и др., Письма в Астрон. журн. **27**, 803 (2001) [D.A. Varshalovich, A.V. Ivanchik, P. Petitjean, R. Srianand, and C. Ledoux] Astron. Lett. **27**, 683 (2001).
- 10. Велти и др. (D.E. Welty, J.T. Lauroesch, T. Wong, and D.G. York), Astrophys. J. **821**, 118 (2016).
- 11. Волфе и др. (A.M. Wolfe, E. Gawiser, and J.X. Prochaska), Astrophys. J. **593**, 215 (2003).
- 12. Волктот-Грин, Найман (J. Wolcott-Green and Z. Haiman), MNRAS **412**, 2603 (2011).
- 13. Дикинсон, Ричардс (A.S. Dickinson and D. Richards), J. Phys. B: At. Mol. Phys. 8, 2846 (1975).
- 14. Дженкинс, Трипп (E.B. Jenkins and T.M. Tripp), Astrophys. J. **734**, 32 (2011).
- 15. Дрейн (В.Т. Draine), Astrophys. J. Suppl. Ser. **36**, 595 (1978).
- 16. Дрейн, Бертолди (В.Т. Draine and F. Bertoldi), Astrophys. J. **468**, 269 (1996).
- 17. Иванчик А.В., Балашев С.А., Варашалович Д.А. и др., Астрон. журн. **93**, 119 (2015) [A.V. Ivanchik, S.A. Balashev, D.A. Varshalovich, and V.V. Klimenko, Astron. Rep. **59**, 100 (2015)].
- 18. Клименко В., Балашев С.А., Иванчик А.В., Варшалович Д.А., Письма в Астрон. журн. **42**, 161 (2016) [V. Klimenko, S.A. Balashev, A.V. Ivanchik, D.A. Varshalovich, Astron. Lett. **42**, 137 (2016)].
- 19. Косенко, Балашев (D.N. Kosenko and S.A. Balashev), J. Phys. Conf. Ser. 012009 (2018), doi:10.1088/1742-6596/1135/1/012009.

- 20. Лакур и др. (S. Lacour, M.K. Andre, P. Sonnentrucker, F. Le Petit, D.E. Welty, J.-M. Desert, R. Ferlet, E. Roueff, et al.), Astron. Astrophys. **430**, 967 (2005).
- 21. Ле Пети и др. (F. Le Petit, E. Roueff, and J. Le Bourlot), Astron. Astrophys. **390**, 369 (2002).
- 22. Лисэт (H.S. Liszt), Astrophys. J. **799**, 11 (2015).
- 23. Нотердам и др. (P. Noterdaeme, C. Ledoux, P. Petitjean, F. Le Petit, R. Srianand, and A. Smette), Astron. Astrophys. **474**, 393 (2007).
- 24. Нотердам и др. (P. Noterdaeme, R. Srianand, H. Rahmani, P. Petitjean, I. Paris, C. Ledoux, N. Gupta, and S. Lopez), Astron. Astrophys. **577**, 24 (2015).
- 25. Оливе и др. (E. Oliva, A. Tozzi, D. Ferruzzi, M. Riva, M. Genoni, A. Marconi, R. Maiolino, and L. Origlia), Proceed. SPIE **10702**, 18 (2018).
- 26. Сноу и др. (T.P. Snow, T.L. Ross, J.D. Destree, M.M. Drosback, A.G. Jensen, B.L. Rachford, P. Sonnentrucker, and R. Ferlet), Astrophys. J. **688**, 1124 (2008).
- 27. Стернберг, Далгарно (A. Sternberg and A. Dalgarno), Astrophys. J. Supp. Ser. **99**, 565 (1995).
- 28. Сильва, Berac (A.I. Silva and S.M. Viegas), MNRAS **329**, 135 (2002).
- 29. Спитцер и др. (L. Spitzer, J.F. Drake, E.B. Jenkins, D.C. Morton, J. B. Rogerson, and D.G. York), Astrophys. J. 181, L116 (1973).
- 30. Спитцер и др. (L. Spitzer, W.D. Cochran, and A. Hirshfeld), Astrophys. J. Suppl. Ser. 28, 373 (1974).
- 31. Фловер и др. (D.R. Flower, J. Le Bourlot, G. Pineau des Forets, and E. Roueff), MNRAS **314**, 753 (2000).
- 32. Шустов и др. (B. Shustov, A.I. Gomez de Castro, M. Sachkov, J.C. Vallejo, P. Marcos-Arenal, E. Kanev, I. Savanov, A. Shugarov, et al.), Astrophys. Sp. Sci. **363**, 62 (2018).