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Diffusion in superfluid Fermi mixtures: General formalism
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With neutron star applications in mind, we developed a theory of diffusion in mixtures of superfluid, strongly
interacting Fermi liquids. By employing the Landau theory of Fermi liquids, we determined matrices that relate
the currents of different particle species, their momentum densities, and the partial entropy currents to each
other. Using these results, and applying the quasiclassical kinetic equation for the Bogoliubov excitations, we
derived general expressions for the diffusion coefficients, which properly incorporate all the Fermi-liquid effects
and depend on the momentum transfer rates between different particle species. The developed framework can
be used as a starting point for systematic calculations of the diffusion coefficients (as well as other kinetic
coefficients) in superfluid Fermi mixtures, particularly, in superfluid neutron stars.
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I. INTRODUCTION

The present work aims at developing a framework for
studying the transport properties (in particular, diffusion) in
superfluid strongly interacting Fermi mixtures and at eluci-
dating the role of the Fermi-liquid effects in shaping these
properties. Although this problem is quite general, its solution
is of particular relevance to the physics of neutron stars (NSs),
and we will always keep NSs in mind when discussing it
below.

Neutron stars are compact objects with a mass of about
M ≈ 1.4M� and a radius R ≈ 12 km (M� is the solar mass).
The density in their inner layers exceeds the nuclear satura-
tion density, 2.8 × 1014 g cm−3, making these objects unique
astrophysical laboratories for studying superdense matter and
testing such fundamental physical theories as the theory of
strong interactions, general relativity theory, and many-body
quantum theory [1]. Despite the fact that NSs were discovered
more than 50 years ago, the equation of state and even the
composition of matter in their deepest layers are still not well
understood. Various theoretical models predict a composition
ranging from a purely nucleon one (neutrons, protons, and
electrons with admixture of muons) to nucleon-hyperon and
quark matter. Laboratory studies of such dense and strongly
degenerate matter are not feasible and the only way of testing
the theories is to compare NS observations with predictions
from theoretical models.

An important and often crucial feature of not too hot NSs
is the presence of baryon superfluidity/superconductivity in
their interiors (see, e.g., Ref. [2,3]). Superfluidity of baryons
(e.g., neutrons and protons in the case of the simplest NS mat-
ter composition) has a dramatic impact on the NS dynamics
by substantially modifying the (magneto)hydrodynamic equa-
tions [4–10] and strongly affecting the dissipative properties
of NS matter (see, e.g., the review [11]).
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One of the potentially interesting dissipative mechanisms
in NSs is associated with particle diffusion. Indeed, since
the NS matter consists of a number of different strongly
interacting particle species, the departure from the diffusion
equilibrium can lead to effective dissipation of the mechanical
(and magnetic) energy through the diffusion currents (see,
e.g., [12]). The diffusion coefficients in a normal (nonsuper-
fluid) mixture of Fermi liquids were calculated by Anderson
et al. [13]. Later, Yakovlev and Shalybkov [14,15], focusing
mainly on the related mechanism of the electric conductivity,
outlined the derivation of the expression for the diffusion
tensor in the presence of the magnetic field. When calculat-
ing the momentum transfer rates, these authors adopted the
free-particle model [16]. Subsequently, their calculations were
improved by taking into account nuclear in-medium effects
[17–19]. The diffusion and electrical conductivity were also
analyzed for quark matter in Refs. [20,21]. An importance
of the diffusion effects was revealed for the evolution of the
magnetic field in NSs in Refs. [22–33]. Moreover, recently
it was argued that, under certain circumstances, the particle
diffusion may become a leading dissipative agent for damping
of neutron star oscillations [34].

Most of the works mentioned above were devoted to
studying nonsuperfluid Fermi mixtures. Since NS matter is
generally superfluid and superconducting, the results obtained
in these works are of limited scope. Cooper pairing of parti-
cles in a mixture leads to several important effects that can
potentially affect diffusion. First of all, superfluidity leads to
the appearance of the energy gap in the dispersion relation
for the elementary Bogoliubov thermal excitations. An impact
of this effect on the diffusion coefficients was analyzed in
Ref. [35]. Second, the number of Bogoliubov excitations is not
conserved in the collisions (see, e.g., [36]), which significantly
complicates all calculations related to particle scatterings.
Third, the superconductivity (i.e., the superfluidity of charged
particles) noticeably modifies the screening properties of a
mixture and affects the electromagnetic interactions between
different charged particle species [20,37–39]. All these effects
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substantially complicate the collision integral. Note, however,
that in a strongly interacting Fermi mixture, besides the dis-
sipative interaction described by the collision integral, one
should also account for the nondissipative interaction between
particles, the so called Fermi-liquid effects. To our best knowl-
edge, the influence of these effects on the particle diffusion
in superfluid mixtures has not been studied in the literature.
Still, the theory of transport processes in such systems cannot
be developed in a consistent way without taking Fermi-liquid
effects into account. The aim of the present paper is to fill this
gap and to introduce a formalism allowing one to calculate the
main transport coefficients, in particular, diffusion in strongly
interacting superfluid Fermi mixtures within the framework of
the Landau Fermi-liquid theory.

The paper is organized as follows. Section II provides basic
definitions and notations. It also briefly discusses, following
Ref. [40], the method of deriving the superfluid entrainment
matrix, as this method shares many common features with
the approach adopted in the present work. In Sec. III, the
expressions for the normal currents are obtained for a sim-
plified problem ignoring the dissipative interaction between
different particle species. In Sec. IV, the same problem is
considered in the framework of kinetic theory. The relation
between the normal currents and the chemical potential gra-
dients is found, the expressions for the diffusion coefficients
are derived, and the entropy generation equation is presented.
Section V generalizes the results obtained above to charged
mixtures. Section VI presents summary of our results. The
paper also contains a number of Appendices. In Appendix A,
the various “entrainment matrices” introduced in the paper
are given in different limiting cases. Appendices B and C
describe, respectively, the general equations of the relativis-
tic superfluid hydrodynamics and the same equations in the
limit of small fluid velocities. In Appendix D we discuss the
effective interaction Hamiltonian for Bogoliubov excitations.
Finally, Appendix E presents the collision integrals for Bo-
goliubov excitations, as well as the formal derivation of the
expressions for the momentum transfer rates.

Throughout this paper we will use the system of units in
which the Planck constant h̄, the Boltzmann constant kB, and
the normalization volume V equal unity (h̄ = kB = V = 1).
However, we will not set the speed of light c equal to 1, since
we will be dealing mostly with the nonrelativistic hydrody-
namic velocities.

II. SUPERFLUID CURRENTS IN A FERMI-LIQUID
MIXTURE

Let us consider a mixture of two interacting super-
fluid Fermi liquids which we label by the indices “n” and
“p”. In spite of the obvious association with neutrons and

protons, up to Sec. V, we will assume that both constituents
are uncharged fluids. In what follows, the indices α, α′, and
α′′ run over particle species. The index β labels the particle
species different from the species α (β �= α). We deal only
with spin-unpolarized matter. This allows us to disregard the
spin dependence of various quantities and treat them as spin-
averaged functions whenever possible.

One of the key features of the hydrodynamics and kinet-
ics of superfluid mixtures is the so-called entrainment effect,
which manifests itself in the fact that superfluid currents are,
generally, not parallel to superfluid velocities [41]. In partic-
ular, in the case of a two-component nonrelativistic mixture,
the currents can be represented as

Jn = (ρn − ρnn − ρnp) Vq + ρnn Vsn + ρnp Vsp, (1)

Jp = (ρp − ρpp − ρpn) Vq + ρpp Vsp + ρpn Vsn, (2)

where Jα is the mass-current density (α = n, p), Vsα is the
superfluid velocity, Vq is the velocity of thermal excitations
(normal liquid component), and ραα′ is the so-called Andreev-
Bashkin matrix (also known as entrainment or mass-density
matrix). The elements of this matrix were calculated for both
nonrelativistic and relativistic mixtures in a series of papers
(see, e.g., Refs. [40,42–49]). In this section we briefly outline
the calculation of the entrainment matrix based on the rela-
tivistic Landau Fermi-liquid theory [50], closely following the
work of Gusakov et al. [40].

In the case of relativistic fluids, it is more convenient to
work with the particle current densities jα instead of the mass
current densities Jα . The former can be represented as [45]

jα =
(

nα −
∑
α′

μα′Yαα′

)
u + c2

∑
α′

Yαα′Qα′ , (3)

where u is the spatial component of the four-velocity uμ, nor-
malized by condition uμuμ = −c2, and describing the motion
of normal liquid component; nα and μα are, respectively, the
number density and relativistic chemical potential of particle
species α measured in the frame, in which uμ = (c, 0, 0, 0).
Finally, Qα is the half Cooper-pair momentum. In the nonrel-
ativistic limit,

u = Vq, ραα′ = mαmα′c2Yαα′ , (4)

where mα is the bare mass of particle species α.

A. Basic definitions

Throughout the paper we assume that Qα/pFα � 1, as well
as that Qα/mα � c, where pFα is the Fermi momentum for
particle species α. In this case, the energy density E of the
system can be represented as [40,51]

E −
∑

α

μ̆αnα =
∑
pσα

(
ε

(α)
0 (p + Qα ) − μ̆α

) (N (α)
p+Qα

− θ
(α)
p+Qα

)+ 1

2

∑
pp′σσ ′αα′

f αα′
(p + Qα, p′ + Qα′ )

(N (α)
p+Qα

− θ
(α)
p+Qα

)

× (N (α′ )
p′+Qα′ − θ

(α′ )
p′+Qα′

)−
∑
pα

�(α)
p u(α)

p v(α)
p

(
1 − F (α)

p+Qα
− F (α)

−p+Qα

)
. (5)
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Here, N (α)
p+Qα

and F (α)
p+Qα

are, respectively, the distribution
functions for Landau quasiparticles and Bogoliubov excita-
tions of particle species α, θ (α)

p = θ (pFα
− |p|), θ (x) is the

step function, ε(α)
0 (p) is the first variation of the system energy

density E with respect to the distribution function N (α)
p+Qα

cal-

culated for the normal Fermi mixture, f αα′
(p, p′) is the second

variation, also called the (spin-averaged) Landau quasiparticle
interaction function [52], μ̆α is the nonequilibrium analog of
the chemical potential μα (to be specified below), �(α)

p is the
Fourier component of the superfluid order parameter, and u(α)

p

and v(α)
p are the Bogoliubov coherence factors related by the

normalization condition,

u(α)2
p + v(α)2

p = 1. (6)

The expression (5) formally contains summations over the
spin indices σ and σ ′. However, since the matter is assumed to
be spin unpolarized, we omit these indices in the distribution
functions. The quasiparticle distribution function N (α)

p+Qα
is

related to the corresponding distribution function for Bogoli-
ubov excitations F (α)

p+Qα
by the equation

N (α)
p+Qα

= v(α)2
p + u(α)2

p F (α)
p+Qα

− v(α)2
p F (α)

−p+Qα
. (7)

The Bogoliubov coherence factors can be found by mini-
mizing the quantity E −∑

α μ̆αnα with respect to u(α)
p , taking

into account the condition (6) and treating the distribution
functions F (α)

p+Qα
as fixed parameters [51].1 The result is

u(α)2
p = 1

2

(
1 + H (α)

p+Qα
+ H (α)

−p+Qα

2E(α)
p+Qα

+ H (α)
−p+Qα

− H (α)
p+Qα

)
, (8)

where

E(α)
p+Qα

= δ
(
E −∑

α μ̆αnα

)
δF (α)

p+Qα

= 1

2

(
H (α)

p+Qα
− H (α)

−p+Qα

)

+
√

1

4

(
H (α)

p+Qα
+ H (α)

−p+Qα

)2 + �
(α)2
p (9)

is the energy of a Bogoliubov excitation, while

H (α)
p+Qα

= ε
(α)
0 (p + Qα ) − μ̆α +

∑
p′σ ′α′

f αα′
(p + Qα, p′ + Qα′ )

× (N (α′ )
p′+Qα′ − θ

(α′ )
p′+Qα′

)
(10)

is the quantity that formally coincides with the energy of a
Landau quasiparticle in a nonsuperfluid matter [43,52]. It is
easy to see that the Bogoliubov coherence factors are even
in p: u(α)

p = u(α)
−p, v(α)

p = v
(α)
−p . The nonequilibrium chemical

potential μ̆α is determined from the requirement that, for
a given (generally, nonequilibrium) distribution function of
Bogoliubov excitations F (α)

p+Qα
, the summation of the quasi-

particle distribution function N (α)
p+Qα

over the quantum states

1We emphasize that the vectors Qα should also be treated fixed
when varying all the thermodynamic potentials considered in the
present paper.

gives the particle number density,

nα =
∑
pσ

N (α)
p+Qα

. (11)

In the vicinity of the Fermi surface the absolute values of the
arguments of the function f αα′

(p, p′) can be approximately
put equal to p ≈ pFα

while the function itself can be expanded
into Legendre polynomials Pl (cos 
):

f αα′
(p, p′) =

∑
l

f αα′
l Pl (cos 
), (12)

where 
 is the angle between the vectors p and p′, f αα′
l are

the symmetric Landau parameters ( f αα′
l = f α′α

l ). The Landau
parameters and the particle effective mass, defined as

m∗
α = pFα

vFα

, (13)

are related by the equation [45]

μα

m∗
αc2

= 1 −
∑
α′

Gαα′μα′

nαc2
. (14)

In these formulas vFα is the Fermi velocity and the symmetric
matrix Gαα′ is given by

Gαα′ = 1

9π4
p2

Fα p2
Fα′ f αα′

1 . (15)

The Fermi momentum pFα is expressed through the particle
number density by the standard formula: pFα = (3π2nα )1/3.
The equilibrium distribution function for Bogoliubov excita-
tions can be found from minimization of the thermodynamic
potential

F = E −
∑

α

μαnα − T S (16)

with respect to F (α)
p+Qα

. Here T is the temperature, S is the
system entropy density, and E −∑

α μαnα is given by the
expression (5), where the chemical potential μ̆α , taken in
equilibrium, is denoted as μα . The entropy density S is given
by the standard combinatorial expression

S =
∑
pσα

σ
(α)
p+Qα

, (17)

where

σ
(α)
p+Qα

= −(1 − F (α)
p+Qα

)
ln
(
1 − F (α)

p+Qα

)− F (α)
p+Qα

lnF (α)
p+Qα

.

(18)

Taking the variation of F and equating the result to zero, one
obtains the standard Fermi-Dirac distribution function [45]

F (α)
p+Qα

= 1

1 + eE
(α)
p+Qα

/T
. (19)

This is the equilibrium distribution function for Bogoliubov
thermal excitations in the reference frame, in which the nor-
mal velocity u vanishes, u = 0. The equilibrium distribution
function in an arbitrary frame can be calculated by mini-
mizing the thermodynamic potential (16) with an additional
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constraint that fixes the momentum density associated with
Bogoliubov excitations; see Sec. III for details.

Throughout this paper, we make the assumption that all the
pairing gaps �(α)

p are isotropic, meaning they do not depend
on the direction of the vector p. This assumption requires
further clarification. As mentioned in the Introduction, neu-
tron stars serve as one of the primary applications for the
results obtained in this study. It is widely accepted that neu-
trons in the cores of neutron stars form Cooper pairs in the
triplet 3P2 state (see, however, Ref. [53] for an alternative
viewpoint). In such a state, the energy gap is anisotropic
(see, e.g., Ref. [54]), and it depends on the direction of the
quantization axis. The presence of this additional preferred
direction significantly complicates the analysis, leading to the
diffusion and other coefficients obtained in the paper becom-
ing tensors rather than scalars. To avoid this difficulty, it is
usually assumed (e.g., Refs. [40,43,55–57]) that the matter of
the neutron star cores consists of a collection of microscopic
domains with randomly oriented quantization axes (see, how-
ever, Refs. [47,58]). Then, after averaging over the volume
containing a large number of domains, the preferred direction
will disappear. In this case, it is reasonable to expect that
accounting for the microscopic anisotropy of the energy gap
does not result in conceptually new effects and can be treated
within the formalism developed for the isotropic gaps. The
only thing that needs to be done is to establish a relation
between a given anisotropic gap and the effective isotropic gap
(see Sec. II B below). This is the strategy we choose to adopt
in the present work, which aligns with the method used in cal-
culating the entrainment matrix components in Refs. [40,43].
The authors of the recent work [49] also restrict themselves
to considering the isotropic neutron gaps. As pointed out
by Leinson [58], who studied the anisotropic gaps, such an
approach can be helpful in the case of small hydrodynamic
velocities, which is relevant to our study. A similar approach
is commonly employed in calculating transport coefficients
[55–57], while the method of averaging the angle-dependent
neutron gap (not related to domain averaging) is often used to
simplify first-principle calculations of the gap itself (see, e.g.,
Refs. [2,59,60]).

B. Calculation of the relativistic entrainment matrix

Throughout this paper we work under the assumption that
it is always possible to choose a reference frame in which all
the hydrodynamic velocities in the system are small, in partic-
ular, Qα/pFα � 1.2 Physically, this means that all the relative
velocities are assumed to be small. Restricting ourselves to the
linear approximation in Qα/pFα , we can rewrite the “energy”
(10) as

H (α)
p+Qα

= ε(α)
p + �H (α)

p , (20)

where ε(α)
p is, by definition, the energy H (α)

p+Qα
in the system

without superfluid currents (Qα′ = 0) and the linear depen-
dence on Qα′ is encoded in the second term, �H (α)

p . In

2For the sake of brevity, the velocity u as well as the momenta Qα

are further referred to as the hydrodynamic velocities.

the absence of superfluid currents, the first term in the ex-
pression (10) is of the order ∼T + �(α)

p , while the second

term ∼ f αα′
(pFα, p′

Fα′ )nα′ (T 2 + �(α)2
p )/μ2

α [43]. Therefore,
the contribution of the second term in the expression (10)
to the energy ε(α)

p is negligibly small and one can write

ε(α)
p = ε

(α)
0 (p) − μ̆α . The second term in the expansion (20),

generally, can be presented as3

�H (α)
p =

∑
α′

γαα′pQα′ , (21)

where γαα′ is a matrix to be determined below.
The energy of Bogoliubov excitations and the distribution

functions can be expanded as well:

E(α)
p+Qα

= E (α)
p + �H (α)

p , (22)

F (α)
p+Qα

= f(α)
p + ∂f(α)

p

∂E (α)
p

�H (α)
p , (23)

N (α)
p+Qα

= n(α)
p + ∂f(α)

p

∂E (α)
p

�H (α)
p , (24)

where E (α)
p is the Bogoliubov excitation energy, while f(α)

p and
n(α)

p are the distribution functions for Bogoliubov excitations
and the Landau quasiparticles in the absence of superfluid cur-
rents. These quantities are given by the following well-known
expressions (see, e.g., Ref. [43]):

E (α)
p =

√
ε

(α)2
p + �

(α)2
p , (25)

f(α)
p = 1

1 + eE (α)
p /T

, (26)

n(α)
p = v(α)2

p + (
u(α)2

p − v(α)2
p

)
f(α)
p . (27)

Substituting (20) and (24) into (10), one obtains, with the
accuracy to the terms linear in Qα ,

�H (α)
p = pQα

m∗
α

+
∑

p′σ ′α′
f αα′

(p, p′)

×
(

∂f(α
′ )

p′

∂E (α′ )
p′

�H (α′ )
p′ − ∂θ

(α′ )
p′

∂p′ Qα′

)
. (28)

We have already neglected the terms ∼(T 2 + �(α)2
p )/μ2

α in
this expression. The functions in the parentheses have a sharp
maximum near the Fermi surface of particle species α′ (at
p ∼ pFα′ ), so that the sums in Eq. (28) can be approximately

3Note that this representation is general as long as the system does
not contain any vectors other than Qα . In particular, Eq. (21) is not
correct if at least one of the paring gaps is treated as anisotropic (see
Ref. [43] for more details). Replacing the anisotropic gap with an
effective isotropic one allows us to avoid this complication.
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FIG. 1. The coefficients Yαα′ normalized by Y = 1041 cm−3 erg−1 as functions of the temperature T (left panel) and the baryon number
density nb (right panel). The critical temperatures are chosen to be Tcn = 6 × 108 K and Tcp = 3 × 109 K (shown by the vertical dashed lines
in the left panel). The left panel is plotted for nb = 0.3 fm−3, the right panel is plotted for T = 2 × 108 K.

calculated as

∑
p′σ ′

f αα′
(p, p′)

∂f(α
′ )

p′

∂E (α′ )
p′

�H (α′ )
p′ = −Gαα′

nα

m∗
α′�α′�H (α′ )

p , (29)

∑
p′σ ′

f αα′
(p, p′)

∂θ
(α′ )
p′

∂p′ Qα′ = −Gαα′

nα

p Qα′ . (30)

For the same reason, we have

∑
pσ

pi pk
∂f(α)

p

∂E (α)
p

= −m∗
αnα�αδi j . (31)

This equality is extensively used in the rest of the paper. The
function �α in Eqs. (29) and (31) is defined as

�α = − π2

m∗
α pFα

∑
pσ

∂f(α)
p

∂E (α)
p

. (32)

It changes from �α = 0 at T = 0 to �α = 1 at T � Tcα ,
where Tcα is the critical temperature for transition of particle
species α = n, p into the superfluid state.

Plugging Eqs. (21), (29), and (30) into the expression (28),
one can obtain a system of equations on γαα′ :

γαα′ = δαα′

m∗
α

+ Gαα′

nα

−
∑
α′′

Gαα′′

nα

m∗
α′′�α′′γα′′α′ . (33)

The solution to these equations is

γαα = (nα + Gααm∗
α )(nβ + Gββm∗

β�β ) − G2
αβm∗

αm∗
β�β

m∗
αS

, (34)

γαβ = Gαβnβ (1 − �β )

S , (35)

where β �= α and

S = (nn + Gnnm∗
n�n)(np + Gppm∗

p�p) − G2
npm∗

nm∗
p�n�p.

(36)

To calculate the particle current density, one can use the stan-
dard “nonsuperfluid” formula [49,51,61]

jα =
∑
pσ

∂H (α)
p+Qα

∂p
N (α)

p+Qα
. (37)

Plugging Eqs. (20), (21), and (24) into this formula and using
the expression (31), one obtains Eq. (3) with

Yαα′ = γαα′nα

c2
(1 − �α ). (38)

It is easy to see that the matrix Yαα′ is symmetric. Figure 1
shows the behavior of the coefficients Yαα′ as functions of
temperature T and baryon number density, nb = nn + np. It is
plotted for neutron star matter composed of protons, neutrons,
and electrons assuming the BSk24 equation of state [62]. The
Landau parameters and the functions �α [see Eq. (32)] were
calculated as described in Ref. [63]; see this reference for
more details. Following Refs. [43,55], the effective neutron
gap was taken to be equal to the minimum value of the angle-
dependent 3P2 gap with the projection of the total angular
momentum of a pair mJ = 0 (see Appendix A in Ref. [43]
for details).

The particle current density (37) can alternatively be repre-
sented as [51]

jα = c2
∑
α′

Y 0
αα′

⎡
⎣Qα′ + 1

nα′

∑
pσ

pF (α′ )
p+Qα′

⎤
⎦, (39)
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where the coefficients

Y 0
αα′ = δαα′

nα

m∗
αc2

+ Gαα′

c2
(40)

are equal to the matrix elements Yαα′ taken at T = 0. On the
other hand, the momentum density of particle species α equals
[51]

Pα =
∑
pσ

(p + Qα )N (α)
p+Qα

= nαQα +
∑
pσ

pF (α)
p+Qα

. (41)

Using Eqs. (39) and (41) together with the relation (14), one
can easily verify that∑

α

Pα =
∑

α

μα

c2
jα, (42)

that is, the total momentum density coincides with the total
mass-current density in the system, the expected result.

Note that the expressions (37) and (39) for particle current
densities, as well as the expression (41) for the momentum
densities, are quite general and can be used even if the sys-
tem is not in complete thermodynamic equilibrium [51] (i.e.,
F (α)

p+Qα
in these equations is not necessarily the Fermi-Dirac

distribution function). We will make use of this fact in the
subsequent presentation.

III. NORMAL CURRENTS IN A SUPERFLUID MIXTURE
OF FERMI LIQUIDS

All the calculations in the previous section were done in
the frame of reference comoving with the normal liquid com-
ponent. In other words, it was implicitly assumed that thermal
excitations of both species, “n” and “p”, move with identical
normal (nonsuperfluid) velocity. How should the results of the
previous section be modified if we assume that these velocities
differ for the “n” and “p” species? In the present section we
will try to address this question for an idealized system, in
which normal velocities of two species differ, but the dissi-
pative interaction (due to collisions) between them is absent.
At the same time, we will allow both species to interact with
a heat bath so that the system can be described with a single
temperature. A similar but more general problem (allowing
for dissipative interaction between the two species) will be
considered in Sec. IV within the kinetic theory. It will be
demonstrated that this problem, formulated in the language of
kinetic theory, is directly related to the diffusion in superfluid
mixtures.

As it is discussed in the previous section, we assume that
there always exists a reference frame in which the velocities
of all the particle species are small. In the system with two
different normal currents it is convenient to work in this frame
and minimize the thermodynamic potential

F̃ = E −
∑

α

μα1nα − T S −
∑

α

PαVqα, (43)

where Pα is the momentum density of particle species α given
by Eq. (41); the vectors Vqα are abstract Lagrange multipliers
whose physical meaning will be clarified below and μα1 are
some chemical potentials in the chosen reference frame (also
Lagrange multipliers, required to keep the total number of

particles α fixed). The last term in the right-hand side of the
expression (43) indicates that our thermodynamic potential is
minimized at fixed momentum densities of the “n” and “p”
particle species. Using the definition (41), the thermodynamic
potential (43) can be rewritten as

E −
∑

α

μαnα − T S −
∑

α

PαVqα, (44)

where Pα ≡ ∑
pσ pF (α)

p+Qα
and we introduced the new chemi-

cal potential μα ≡ μα1 + QαVqα .
There is one point to be made here before moving on. All

the thermodynamic variables appearing in the hydrodynamic
equations are usually defined (measured) in the reference
frame comoving with the fluid. When a mixture of few super-
fluids is considered, one usually chooses the frame comoving
with the normal (nonsuperfluid) liquid component (see, e.g.,
Ref. [41]). In particular, the chemical potentials entering the
formula (3) are assumed to be the same as those arising in
the second law of thermodynamics (B7) written down in the
comoving reference frame. However, allowing for the two
independent normal velocity fields, the standard definition of
the comoving frame loses its meaning and we are forced to
work in a more general reference frame. This means, in par-
ticular, that the chemical potentials μα entering the expression
(44) are not the same potentials as those appearing in the
formulas (3) and (B7). However, since these potentials are
scalars with respect to spatial transformations, the difference
between chemical potentials measured in different reference
frames can depend only on bilinear combinations of the hy-
drodynamic velocities. Thus, this difference is quadratically
small by assumption (see the beginning of Sec. II B) and can
be ignored in the subsequent analysis.

Minimizing the thermodynamic potential (44) by calculat-
ing the variation of the energy density E , the number densities
nα , and the quantities Pα with respect to variation of the
distribution function F (α)

p+Qα
, one obtains

F (α)
p+Qα

= 1

1 + e(E(α)
p+Qα

−pVqα )/T
. (45)

As we just emphasized, we work in a reference frame where
all the hydrodynamic velocities are small. Therefore, assum-
ing that Qα/pFα and Vqα/vFα � 1,4 all the quantities in this
expression can be expanded in powers of Qα and Vqα . In this
way, the expressions (23) and (24) should be replaced with

F (α)
p+Qα

= f(α)
p + ∂f(α)

p

∂E (α)
p

(
�H (α)

p − pVqα

)
, (46)

N (α)
p+Qα

= n(α)
p + ∂f(α)

p

∂E (α)
p

(
�H (α)

p − pVqα

)
, (47)

where we made use of the expansion (22) for the energy
E(α)

p+Qα
. The quantity �H (α)

p in Eq. (22) now, generally,

4Further it will be argued that Vqα ≈ u.
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depends on both the vectors Qα and Vqα , and can be written
as

�H (α)
p =

∑
α′

(γαα′pQα′ + Kαα′pVqα′ ). (48)

Plugging Eqs. (20), (47), and (48) into (10), and using (again,
as in Sec. II B) Eqs. (29) and (30), one obtains, besides
Eqs. (33), the equations for the coefficients Kαα′ :

Kαα′ = Gαα′m∗
α′

nα

−
∑
α′′

Gαα′′

nα

m∗
α′′�α′′Kα′′α′ . (49)

The solution to these equations is

Kαα = Gααm∗
α�α (nβ + Gββm∗

β�β ) − G2
αβm∗

αm∗
β�α�β

S , (50)

Kαβ = Gαβm∗
βnβ�β

S , (51)

where we recall that β �= α and S is given by the
expression (36).

Now one can calculate the particle current density jα . Sub-
stituting Eqs. (20), (47), and (48) into (37), one obtains

jα = RααVqα + RαβVqβ + c2YααQα + c2YαβQβ, (52)

where the elements of the superfluid entrainment matrix Yαα′

are given by Eqs. (38) and the coefficients Rαα′ are defined as

Rαα = nαKαα (1 − �α ) + nα�α, (53)

Rαβ = nαKαβ (1 − �α ). (54)

This set of coefficients is, to our best knowledge, introduced in
the literature for the first time. In analogy to the matrix Yαα′ ,
we call the coefficients Rαα′ the normal entrainment matrix.
Alternatively, the matrix Rαα′ can be expressed through γαα′

as

Rαα′ = nα′m∗
α′�α′γα′α. (55)

It can be verified that the obtained coefficients satisfy the
following sum rule:

μαYαα + μβYαβ + Rαα + Rαβ = nα, (56)

which is the generalization to finite temperatures of the sum
rule derived in Ref. [45]. This sum rule is related to particle
number conservation. Indeed, if one introduces the superfluid
velocities according to the definitions, Vsα ≡ Qαc2/μα ,5 and
assumes that all the fluid components move with one and
the same velocity, i.e., Vqn = Vqp = Vsn = Vsp = u, then [in
view of Eq. (56)] the expression (52) will reduce to jα = nαu,
as expected. One can obtain another useful relation from
Eq. (56) by using the definitions (38), (53), and (54):

μα

c2
γαα + μβ

c2
γαβ + Kαα + Kαβ = 1. (57)

5Note that, for a relativistic equation of state, the superfluid ve-
locity introduced this way does not obey the potentiality condition,
curl Vsα �= 0. This is in contrast to the vectors Qα , which are pro-
portional (with constant coefficient) to the gradient of the superfluid
order parameter phase [see expression (B11)], and thus satisfy the
potentiality condition.

Setting Vqn = Vqp = u in Eq. (52) and taking into account
Eq. (56), one derives [cf. Eq. (3)]

jα,0 = nqαu + c2
∑
α′

Yαα′Qα′ , (58)

where

nqα = nα −
∑
α′

μα′Yαα′ =
∑
α′

Rαα′ . (59)

Therefore, when the vectors Vqn and Vqp coincide, they have
the meaning of the normal velocity of thermal excitations. In
turn, the quantity nqα can be interpreted as the normal density
of particle species α. Note, however, that in a strongly inter-
acting mixture nqα can become negative; see the discussion at
the end of the present section.

If one of the constituents, say “n”, is nonsuperfluid (�n =
1), then the particle current densities reduce to

jn = nnVqn, jp = RppVqp + RpnVqn + c2YppQp; (60)

the values of the matrix elements in this limit are given in
Appendix A. In the case of a completely nonsuperfluid mix-
ture, they further simplify as

jn = nnVqn, jp = npVqp. (61)

Thus, in the nonsuperfluid mixture, the vectors Vqα have the
meaning of the hydrodynamic velocities of the corresponding
particle species. In the superfluid mixture the interpretation of
these vectors is more complicated; see the end of Sec. IV for
a discussion.

On the other hand, if one of the species, say “p”, is in the
regime of strong superfluidity (�p → 0, T � Tcp), then one
has for the currents

jn = RnnVqn + c2YnnQn + c2YnpQp, (62)

jp = RpnVqn + c2YpnQn + c2YppQp. (63)

Again, the relevant matrix elements are given in Appendix A.
As one can see, the Fermi-liquid effects lead to the finite nor-
mal current density of particle species “p” even at T � Tcp.

One can notice that the matrix Rαα′ , in contrast to the
matrix Yαα′ , is not symmetric. This fact, however, does not
point to some defect of the theory since the vectors Vqα , in
contrast to the vectors Qα , are not momenta. To symmetrize
the expression (52), we introduce the momentum densities
Pqα , associated with the normal fluid motions instead of the
vectors Vqα . Using Eq. (41), they are defined as

Pqα =
∑
pσ

pF (α)
p+Qα

∣∣
Qn=Qp=0. (64)

Now, with the help of Eq. (39), one can express the particle
current densities through the momentum variables Pqα/nα:

jα = c2Y 0
αα

Pqα

nα

+ c2Y 0
αβ

Pqβ

nβ

+ c2YααQα + c2YαβQβ. (65)
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FIG. 2. Left panel: The coefficients Rαα′ normalized to the baryon density nb as functions of temperature are shown for nb = 0.3 fm−3,
Tcp = 2 × 109 K, Tcn = 6 × 108 K, and for the BSk24 equation of state. Right panel: Zoomed-in version of the plot in the left panel near
T ≈ Tcn.

In this expression, the matrix Y 0
αα′ , which is a special case

of the symmetric matrix Yαα′ [see Eq. (40)], is obviously
symmetric.

The coefficients Rαα′ , calculated for the same model of
neutron-star matter as the matrix Yαα′ in Fig. 1, are shown
as functions of temperature T in Fig. 2 for nb = 0.3 fm−3

and in Fig. 3 for nb = 0.5 fm−3. One can see that all the
coefficients vanish when the temperature tends to zero. This is
a reasonable result, since there are no temperature excitations
in the zero-temperature limit. Considering the vicinity of the
critical temperature Tcn, one can notice that the behavior of the
matrix elements Rαα′ and Yαα′ is different. If T � Tcn, both the

nondiagonal coefficients Ypn = Ynp vanish together with the
coefficient Ynn. This is expected, since then the particle species
“n” is nonsuperfluid (normal) so that the current density jp

cannot depend on Qn. As for the matrix Rαα′ , only the element
Rnp vanishes at T > Tcn.

The normal number densities nqα are shown in Fig. 4 as
functions of temperature for the same equation of state BSk24.
The function nqn behaves exactly as one would expect. It
equals nn for T � Tcn and exponentially decreases to zero at
T � Tcn. In contrast to nqn, the behavior of the normal density
nqp is more counterintuitive. It starts from np at T = Tcp

and then rapidly drops to negative values with decreasing
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FIG. 3. The same as in Fig. 2 but for nb = 0.5 fm−3, Tcp = 4 × 108 K, and Tcn = 5 × 108 K.
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FIG. 4. The normal number densities nqα normalized to the baryon density nb as functions of temperature plotted for nb = 0.3 fm−3,
Tcp = 2 × 109 K, Tcn = 6 × 108 K (left panel) and nb = 0.5 fm−3, Tcp = 4 × 108 K, Tcn = 5 × 108 K (right panel).

temperature. After reaching a minimum, it begins to increase,
approaching zero at T → 0. The negativity of nqp is related
to negativity of the coefficient Gpn for the chosen equation of
state [see Eq. (15) and Eq. (70) below]. This feature, however,
does not lead to any unphysical consequences. In particular,
the system energy in the presence of particle currents always
increases, as shown in what follows.

Assume, for simplicity, that the only currents generated in
the system are the normal ones, i.e., Qn = Qp = 0. Then, in
the linear approximation, one can express Vqα through Pqα as

Vqα =
∑
α′

Mαα′Pqα′ , (66)

where the elements of the matrix Mαα′ can be calculated by
equating Eqs. (52) and (65), and using the expression (109)
for the determinant of the matrix Rαα′ :

Mαα′ = nαδαα′ + Gαα′m∗
α�α

nαnα′m∗
α�α

. (67)

Now, using the fact that the thermodynamic potential (44) is
stationary with respect to variations of nα , S, and Pα = Pqα ,
one has dE = ∑

α μαdnα + T dS +∑
α VqαdPqα , and hence

[see Eq. (66)]

E ≈ E0(nα, S) + 1

2

∑
αα′

Mαα′PqαPqα′ , (68)

where E0(nα, S) is the energy density of the system in the
absence of currents. To make the system energy with currents
larger than that without currents, the matrix Mαα′ should be
positive-definite, which implies

nα

m∗
α

+ Gαα�α > 0, S > 0. (69)

An equivalent set of constraints has been obtained, in particu-
lar, in Ref. [44] from the requirement of stability of superfluid
Fermi mixture at T = 0 with respect to spontaneous genera-
tion of superfluid currents in the system. The conditions (69)
do not constrain the sign of the coefficient Gnp. On the other
hand, in the limit T � Tcp, one obtains [cf. Eq. (A31)]

nqp ≈ Rpn ≈ nnm∗
nGnp�n

nn + Gnnm∗
n�n

, (70)

according to which the quantity nqp has the same sign as the
coefficient Gnp.

IV. DIFFUSION

In the previous section, we obtained the expression for
particle current densities under the assumption that the dis-
sipative interaction between different particle species can be
neglected. If one wants to allow for such interaction, one
should work within the framework of transport theory. In this
section, we demonstrate the close relation of the approach
developed in Sec. III to the diffusion theory of particles in
a superfluid Fermi mixture.

A. Basic equations

Let us suppose that the characteristic wavenumber of our
problem is q, while the characteristic frequency is ω. In
the long-wavelength/small-frequency (“quasiclassical”) limit
(qvFα, ω � �α), one can formulate the Boltzmann-like ki-
netic equation for the Bogoliubov excitations [51,64]:

∂F (α)
p+Qα

∂t
+ ∂E(α)

p+Qα

∂p

∂F (α)
p+Qα

∂r
− ∂E(α)

p+Qα

∂r

∂F (α)
p+Qα

∂p
= Iα[F],

(71)
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where F (α)
p+Qα

is the distribution function of Bogoliubov exci-

tations, E(α)
p+Qα

is the energy of a Bogoliubov excitation given
by Eq. (9), I (α)[F] is the collision integral (see Appendix E),
and F denotes the set of the distribution functions F (n)

p+Qn

and F (p)
p+Qp

. This equation should be supplemented with the
continuity equations for particle species α = n, p. In what
follows, we do not account for the chemical reactions between
the species “n” and “p”, assuming that the number of particles
of each species is conserved separately. Thus, the continuity
equations can be represented as

∂nα

∂t
+ divjα = 0, (72)

where the particle current density jα can still be calculated
with the expressions (37) or (39). It is worth noting that
Eq. (72) cannot be obtained from the kinetic equation (71). To
derive it from the microphysical theory, one needs to consider
the full system of kinetic equations for Landau quasiparti-
cles [51,64,65]. In addition to Eqs. (71) and (72), one also
needs an equation describing the evolution of the superfluid
component. For an uncharged mixture this “superfluid” equa-
tion takes the form [51,64]

∂Qα

∂t
= −∇μ̆α, (73)

where μ̆α is the nonequilibrium analog of the corresponding
chemical potential of particle species α, which has already
been introduced in the expression (5).

B. Thermodynamic equilibrium

First of all, we need to determine the equilibrium state to
which dissipative corrections will be sought. Besides the usual
thermodynamic variables (e.g., temperature and chemical po-
tentials), the equilibrium state of a superfluid Fermi mixture
is generally characterized by the velocity u of normal part
of the mixture (Bogoliubov thermal excitations) and by the
superfluid currents for each particle species [5]. These super-
currents can exist in the system without any dissipation until
they reach some critical values (see, e.g., Refs. [66–68]). The
equilibrium distribution function corresponding to this situa-
tion has already been found in Sec. III. Indeed, as discussed in
Sec. III, when the vectors Vqn and Vqp are equal to each other,
they have the meaning of the normal velocity u. In this case,
corresponding to complete thermodynamic equilibrium, the
equilibrium distribution function of Bogoliubov excitations
takes the form [see Eq. (45) with Vqα = u]

F (α)
p+Qα,0 = 1

1 + e(E(α)
p+Qα ,0−p u)/T

, (74)

where

E(α)
p+Qα,0 = E (α)

p + p
∑
α′

γαα′wwwα′ + pu (75)

is the equilibrium energy of Bogoliubov excitations and wwwα =
[Qα − (μα/c2)u] is the vector proportional to the difference
between the superfluid and normal velocities.

To obtain Eq. (75) one needs to substitute Eq. (48) into
(22), set Vqn = Vqp = u, and apply the relation (57). Plugging
(75) into the distribution function (74), one finally gets

F (α)
p+Qα,0 = 1

1 + e{E (α)
p +p

∑
α′ γαα′wwwα′ }/T

. (76)

The equilibrium particle current density can be calculated
by setting Vqn = Vqp = u in Eq. (52), and is given by the
expression (58).

C. Perturbations of the thermodynamic equilibrium

Let us now assume a small departure from the thermody-
namic equilibrium. We restrict ourselves to considering the
corrections caused by the small gradients of macroscopic vari-
ables. In this case, the formal small parameter is the Knudsen
number K = �q, where � is the mean free path of Bogoliubov
excitations.

To find an approximate solution to Eqs. (71)–(73), we,
following Chapman-Enskog method (see, e.g., Ref. [69]), ex-
pand the distribution function for Bogoliubov excitations in
the powers of the small parameter K:

F (α)
p+Qα

= F (α)
p+Qα,0 + f̄(α)

1 . (77)

Here the function F (α)
p+Qα,0 satisfies the equation

I (α)
[F (α)

p+Qα,0,F
(β )
p+Qβ ,0

] = 0 (78)

(see Appendix E for details) and f̄(α)
1 is the small correction

to be found below. The function F (α)
p+Qα,0 is the Fermi-Dirac

distribution function,

F (α)
p+Qα,0 = 1

1 + e(E(α)
p+Qα

−p u)/T
, (79)

where all the thermodynamic variables, as well as the hydro-
dynamic velocities, can generally depend on time and space
coordinates, and

E(α)
p+Qα

= E(α)
p+Qα,0 + �E(α)

p+Qα
(80)

is the local Bogoliubov excitation energy, which depends
on the nonequilibrium distribution functions F (α)

p+Qα
of all

particle species. In the Landau theory of Fermi liquids the
energy E(α)

p+Qα
generally differs from the equilibrium energy

E(α)
p+Qα,0, given by Eq. (75) [52]. The difference �E(α)

p+Qα
be-

tween these energies should be found simultaneously (and
self-consistently) with the function f̄(α)

1 ; see Sec. IV D for
details.

Let us transform the left-hand side of Eq. (71) to a
form more suitable for the subsequent analysis. Plugging
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the expansion (77) into (71), we get

∂F (α)
p+Qα,0

∂E(α)
p+Qα

[
∂E (α)

p

∂t
+ p

∑
α′

γαα′
∂wα′

∂t
+ p

∑
α′

wα′
∂γαα′

∂t
− E (α)

p + p
∑

α′ γαα′wα′

T

∂T

∂t
−
(

∂E (α)
p

∂p
+
∑
α′

γαα′wα′

)

× E (α)
p + p

∑
α′ γαα′wα′

T
∇T −

(
∂E (α)

p

∂p
+
∑
α′

γαα′wα′

)
∇(pu) + (u∇ )

(
E (α)

p + p
∑
α′

γαα′wα′

)]
+ derivatives of �E(α)

p+Qα

+ derivatives of f̄(α)
1 = I (α)[F]. (81)

First of all, we note that the expression (81) contains a
number of terms with various derivatives of f̄(α)

1 and �E(α)
p+Qα

,
which we do not write down explicitly. There terms are
quadratically small in the parameter K and, therefore, they
should be omitted. Further, choosing nα and S as the indepen-
dent thermodynamic variables,6 we substitute the relations

∂E (α)
p

∂t
=
∑
α′

∂E (α)
p

∂nα′

∂nα′

∂t
+ ∂E (α)

p

∂S

∂S

∂t
, (82)

∂T

∂t
=
∑
α′

∂T

∂nα′

∂nα′

∂t
+ ∂T

∂S

∂S

∂t
, (83)

∂γαα′

∂t
=
∑
α′

∂γαα′

∂nα′

∂nα′

∂t
+ ∂γαα′

∂S

∂S

∂t
, (84)

∂μα

∂t
=
∑
α′

∂μα

∂nα′

∂nα′

∂t
+ ∂μα

∂S

∂S

∂t
(85)

into Eq. (81). To calculate the time derivatives of nα , we make
use of the continuity equations (72), where the particle current
density is given by Eq. (58). In order to calculate the time
derivative of the entropy we apply the entropy equation (130),
which has a natural form and will be derived from the kinetic
equation in Sec. IV E.

Besides the expansion in Knudsen number we should
work in the linear approximation in hydrodynamic veloci-
ties. Moreover, following the standard approach (see, e.g.,
Refs. [4,12,71]), we will omit all the terms in Eq. (81) that
explicitly depend on the velocity difference wwwα (but not on its
derivatives).7 To simplify the calculations, we also consider a
certain point in space where u = 0 at a given moment of time.
Clearly, this assumption does not lead to any loss of generality,

6Strictly speaking, besides nα and S any thermodynamic quantity
in a superfluid matter will also generally depend on the velocity
difference squared, www2

α = [Qα − (μα/c2)u]2 (see, e.g., Ref. [4] for
a detailed discussion and Ref. [70] for a relativistic generalization).
However, since we work in the linear approximation in hydrody-
namic velocities, this dependence can be ignored.

7Accounting for these terms would lead to a substantial increase
in the number of transport coefficients, even for a one-constituent
superfluid liquid (see, e.g., Ref. [72]). However, as argued in the
literature [12], these terms are small in comparison to the retained
ones in the majority of applications. Since obtaining the most general
form of the (linearized) transport equation is not among the goals of
the present paper, we restrict ourselves to neglecting these terms in
what follows.

since it can always be fulfilled by choosing an appropriate
inertial reference frame.

To calculate the time derivative of the momentum Qα ,
we should use the superfluid equation (73). Before using it,
it is necessary to relate the chemical potentials μ̆α and μα .
Generally, they differ for two reasons. First, as discussed
above, the chemical potential itself can be defined in various
ways (e.g., in different reference frames). This difference is
of the second order smallness in hydrodynamic velocities
and can be neglected (see Sec. III). Second, the quantity μ̆α

may contain dissipative corrections caused by the departure of
the distribution functions F (α)

p+Qα
from those defined in local

thermodynamic equilibrium. However, these differences are
small, ∼O(K), and should be neglected in the Chapman-
Enskog method after substituting Eq. (73) into the left-hand
side of the kinetic equation. Thus, for our purposes, one could
use Eq. (73) with μ̆α replaced by μα .

With these comments in mind, Eq. (81) can be rewritten as

− ∂f(α)
p

∂E (α)
p

[∑
α′

γαα′
μα′

c2
p

∂u
∂t

+
∑
α′

γαα′p∇μα′

−
∑
α′

(
∂E (α)

p

∂nα′
+ E (α)

p

T

∂T

∂nα′

)
divjα′

+ S

(
∂E (α)

p

∂S
− E (α)

p

T

∂T

∂S

)
divu + ∂E (α)

p

∂p
∇(pu)

+ ∂E (α)
p

∂p

E (α)
p

T
∇T

]
= Iα[F]. (86)

It remains just to exclude the time derivative of the velocity
u. To this aim, let us multiply Eq. (86) by p and sum the result
over the quantum states. Using Eqs. (31) and (55), we find

∑
α′

Rα′α
μα′

c2

∂u
∂t

+
∑
α′

Rα′α∇μα′ + Sα∇T =
∑
pσ

pIα[F].

(87)
Note that some terms in Eq. (86) disappeared after the sum-
mation because they are antisymmetric in p. In Eq. (87), Sα is
the “partial entropy density” for particle species α,

Sα =
∑
pσ

σ
(α)
p,0 , (88)

where σ
(α)
p,0 is given by the expression (18) with the current-

free equilibrium distribution function (26) instead of F (α)
p+Qα

.
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It can be shown that

∑
pσ

σ
(α)
p,0 = −1

3

∑
pσ

p
E (α)

p

T

∂E (α)
p

∂ p

∂f(α)
p

∂E (α)
p

. (89)

From this equation it becomes apparent that the last term in
the left-hand side of Eq. (87) came from the last term in the
left-hand side of Eq. (86). The sum of the right-hand sides of
Eq. (87) for all particle species must vanish due to momentum
conservation (see Appendix E). As for the left-hand sides,
summing them up and using the definition (59) we get8

ρq
∂u
∂t

= −nqn∇μn − nqp∇μp − S∇T, (90)

where

ρq =
∑

α

μα

c2
nqα. (91)

Equation (90) has the form of the linearized Euler equation,
in which the quantity ρq plays the role of the density of
normal (nonsuperfluid) component of the liquid. However, it
was argued in Sec. III that at least one of the normal number
densities nqα can be negative. In spite of this, the quantity ρq

appears to be always non-negative. Indeed, substituting the
definitions (59), (55), (34), and (35) into (91), and making use

of the relation (14), one can represent ρq as

ρq = nnnp

S [nnm∗
n�n(1 − �p) + npm∗

p�p(1 − �n)]

+ Snsf

S
nnμn + npμp

c2
�n�p, (92)

where S is given by Eq. (36) and Snsf is the value of S in
a nonsuperfluid mixture [see Eq. (A16)]. According to the
stability constraint (69), S > 0 and, consequently, Snsf > 0.
Thus, the normal density ρq � 0 and vanishes only at T = 0,
as expected.

Plugging the time derivative from Eq. (90) into (86), one
arrives at

− ∂f(α)
p

∂E (α)
p

{∑
α′

[
γαα′ −

(
γαα

μα

c2
+ γαβ

μβ

c2

)
nqα′

ρq

]
p ∇μα′

−
[(

γαα

μα

c2
+ γαβ

μβ

c2

)
S

ρq
p − E (α)

p

T

∂E (α)
p

∂p

]
∇T

+
∑
α′

(
∂E (α)

p

∂nα′
− E (α)

p

T

∂T

∂nα′

)
divjα′

+ S

(
∂E (α)

p

∂S
− E (α)

p

T

∂T

∂S

)
divu + ∂E (α)

p

∂p
∇(pu)

}
= Iα[F].

(93)

This equation can be rewritten in a more canonical form as

− ∂f(α)
p

∂E (α)
p

{∑
α′

[
γαα′ −

(
γαα

μα

c2
+ γαβ

μβ

c2

)
nqα′

ρq

]
p ∇μα′ −

[(
γαα

μα

c2
+ γαβ

μβ

c2

)
S

ρq
p − E (α)

p

T

∂E (α)
p

∂p

]
∇T

+
[∑

α′
nα′

(
∂E (α)

p

∂nα′
− E (α)

p

T

∂T

∂nα′

)
+ S

(
∂E (α)

p

∂S
− E (α)

p

T

∂T

∂S

)
+ 1

3

∂E (α)
p

∂p
p

]
divu

+
∑
α′

(
∂E (α)

p

∂nα′
− E (α)

p

T

∂T

∂nα′

)
div(jα′ − nα′u)

+1

2

(
∂E (α)

p

∂ pi
pj − 1

3
δi j

∂E (α)
p

∂p
p

)(
∂ui

∂r j
+ ∂u j

∂ri
− 2

3
δi jdivu

)}
= Iα[F]. (94)

This is the general equation allowing one to study different
transport processes in strongly interacting superfluid Fermi
mixtures, such as the thermal conductivity, bulk and shear
viscosities, and particle diffusion. In nonsuperfluid matter one
has γαα → 1/m∗

α and γαβ → 0, and thus the in-medium ef-
fects in the left-hand side of Eq. (94) manifest themselves only
through the renormalization of the particle masses, when mα is
replaced with m∗

α . In contrast, in a superfluid mixture, Eq. (94)

8One can arrive at the same equation from the phenomenological
hydrodynamics. To do this, one needs to substitute Eq. (C19) into
(C10), accounting for the relation (56) and setting the electrical
charges of all particle species to zero.

explicitly depends on all the Landau parameters f αα′
1 through

the elements of the matrix γαα′ see Eqs. (34) and (35).

D. Diffusion currents

In the present paper we focus on the diffusion of particles
produced by the gradients of chemical potentials. Assuming
all other gradients in Eq. (94) vanish, we find

− ∂f(α)
p

∂E (α)
p

∑
α′

[
γαα′ −

(
γαα

μα

c2
+ γαβ

μβ

c2

)
nqα′

ρq

]
p ∇μα′

= Iα[F]. (95)

Let us multiply this equation by p and sum the result over
quantum states. Using the expressions (31) and (55) together
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with the definitions (59) and (91), we obtain9

R

ρq

μnμp

c2

(∇μn

μn
− ∇μp

μp

)
=
∑
pσ

p In[F], (96)

− R

ρq

μnμp

c2

(∇μn

μn
− ∇μp

μp

)
=
∑
pσ

p Ip[F], (97)

where R = RnnRpp − RnpRpn.
Our immediate goal will be to find the corrections f̄(α)

1 to
the equilibrium distribution functions (77), and to calculate
the particle current densities using the expression (37). In-
stead of the corrections f̄(α)

1 it is convenient to introduce the
functions φα through the relation [52]

f̄(α)
1 = −∂F (α)

p+Qα,0

∂E(α)
p+Qα,0

φα = F (α)
p+Qα,0

(
1 − F (α)

p+Qα,0

)
T

φα. (98)

Following Refs. [15,73], we look for φα in the form10

φα = pViα (p), (99)

where the vector Viα (p) is assumed to be a smooth function
of p. In a highly degenerate matter, collisions occur mostly
between particles in the vicinity of the corresponding Fermi

surfaces, where the derivative −∂F (α)
p+Qα,0/∂E

(α)
p+Qα,0 has a

sharp maximum, while the function Viα (p) is expected to
vary only slightly. Hence, to a first approximation one may
treat Viα as a constant vector. In the present paper, following
Refs. [15,73], we will work within this approximation.

As was already mentioned above, besides the correction
f̄(α)
1 , one also needs to determine the correction �Ep+Qα

to the
equilibrium Bogoliubov excitation energy [see the expression
(80)]. To do this, we make use of the self-consistency relation
(10), exactly as was done in Sec. III. Working in the linear
approximation in vectors Viα , the energy correction can be
presented as

�E(α)
p = p

∑
α′

K̃αα′Viα′ , (100)

where the coefficients K̃αα′ are yet to be determined. Substi-
tuting this expression together with expressions (98) and (99)
into the distribution function (77) and linearizing the result

9The same equations can be obtained if one substitute the time
derivative from Eq. (90) into Eqs. (87), where ∇T is set to zero.

10It should be stressed that if a set of functions Viα (p) satisfies the
transport equation, then another set Viα (p) + a, where a is an arbi-
trary vector, would satisfy the same equation (see also Appendix E).
From the physical point of view, this ambiguity is related to the fact
that the definition of the velocity u in the dissipative hydrodynamics
is not unique (see, e.g., Ref. [12]). Hence, an additional constraint
should be applied to the solution. The choice of the constraint is
discussed after the expression (104).

with respect to Viα , one gets

F (α)
p+Qα

≈ f(α)
p + ∂f(α)

p

∂E (α)
p

p
∑
α′

γαα′wα′ + ∂f(α)
p

∂E (α)
p

p
∑
α′

K̃αα′Viα′

− ∂f(α)
p

∂E (α)
p

pViα. (101)

Out of the thermodynamic equilibrium the Bogoliubov coher-
ence factors are still given by Eqs. (6) and (8) [51,64]. Hence,
the distribution functions N (α)

p+Qα
and F (α)

p+Qα
are still related

by the expression (7). Then, linearizing Eq. (8) and using
the fact that Bogoliubov coherence factors are even, while
the representation (100) is odd with respect to transformation
p → −p, one can show that �H (α)

p = �E(α)
p , where �H (α)

p

is the nonequilibrium correction to the quantity H (α)
p+Qα

, given
by Eq. (10). Plugging all the expansions into the expression
(10), one can finally obtain the equations for the coefficients
K̃αα′ ; the detailed calculation is similar to that presented in
Sec. III. As a consequence, the resulting equations coincides
with Eq. (49), hence the matrix elements K̃αα′ coincide with
Kαα′ , and are given by the expressions (50) and (51). The
fact that K̃αα′ = Kαα′ allows us to use the expansion (22) with
�H (α)

p given by Eq. (48), where by Vqα one should understand
the sum u + Viα , i.e., Vqα = u + Viα .

Now, substituting the expansion (101) into Eq. (37) and
using the relation (57) together with the definitions (38), (53),
(54), and (59), one obtains

jα = RααVqα + RαβVqβ + c2YααQα + c2YαβQβ (102)

= nqαu + c2YααQα + c2YαβQβ + �jα. (103)

Here, the expression in the first line is completely identical to
that in Eq. (52). In the second line the same result is presented
in the form more suitable for establishing the connection with
the phenomenological hydrodynamics. Equation (103) intro-
duces the diffusion currents according to definition

�jα = RααViα + RαβViβ. (104)

Inverting the relations (104), one obtains

Vin = Rpp�jn − Rnp�jp

R
, Vip = Rnn�jp − Rpn�jn

R
.

(105)
To complete the derivation one also needs to define the

comoving reference frame in which u = 0. This can be done
in a number of ways. We prefer to choose the so-called
Landau-Lifshitz frame, in which the additional momentum
density caused by the dissipative currents (diffusion currents
in our case) equals zero [12]. Using Eq. (42), this requirement
translates into ∑

α

μα

c2
�jα = 0. (106)

A similar condition is used in the study of nonsuperfluid
mixtures in Refs. [15,74].

Let us now consider the right-hand side of Eqs. (96)
and (97). After substitution of the distribution functions (77)
together with expressions (98) and (99) into the collision
integral, it can be represented in the following form (see

025814-13



O. A. GOGLICHIDZE AND M. E. GUSAKOV PHYSICAL REVIEW C 108, 025814 (2023)

Appendix E for details):∑
pσ

p Iα[F] = −Jαβ (Viα − Viβ ), (107)

where Jαβ are the momentum transfer rates (Jαβ = Jβα).11 Use
of Eqs. (96), (97), (105), and (107) allows us to find

�jp = −μpμ
2
n

c4ρ2
q

R2

Jnp

(∇μp

μp
− ∇μn

μn

)
,

�jn = μnμ
2
p

c4ρ2
q

R2

Jnp

(∇μp

μp
− ∇μn

μn

)
. (108)

The determinant of the matrix Rαα′ can be represented, with
the help of Eqs. (34)–(36) and (55), as

R = nnnp�n�p
Snsf

S , (109)

where we recall that Snsf is the value of the quantity S taken
for a nonsuperfluid mixture [see Eq. (A16)].

The relation (108) allows us to express the diffusion coeffi-
cients arising in relativistic superfluid hydrodynamics [10,74]
(see Appendix B) in a practical case of low-temperature de-
generate isothermal matter (∇T = 0). For uncharged binary
mixture, the expression (C14), written down for both particle
species “n” and “p”, reads

�jn = −Dnn
∇μn

T
− Dnp

∇μp

T
, (110)

�jp = −Dpn
∇μn

T
− Dpp

∇μp

T
. (111)

Plugging Eqs. (106) and (B18) into the expression (111) and
comparing the result with Eq. (110), we find

Dnn = −μp

μn
Dnp, Dpp = −μn

μp
Dnp, (112)

and

�jp = Dnpμn

T

(∇μp

μp
− ∇μn

μn

)
. (113)

Finally, comparing Eq. (113) with (108), we arrive at

Dnp = −μpμnT

c4ρ2
q

R2

Jnp
. (114)

This is one of the central results of our work showing how
the Fermi-liquid effects and superfluidity manifest themselves
in the diffusion coefficients of the mixture. To expose the
Fermi-liquid effects in this formula, let us consider a few
special cases. If one deals with a mixture of two independent

11Taking this property into account, one can easily see that
Eqs. (96) and (97), in fact, coincide.

Fermi liquids (Gαβ = 0), the diffusion coefficient takes the
form

Dnp = − μpμnn2
qnn2

qp

(μnnqn + μpnqp)2

T

Jnp
, (115)

where (see Appendix A)

nqα = Rαα = nαm∗
αc2�α

m∗
αc2�α + μα (1 − �α )

. (116)

If all the Fermi-liquid effects can be neglected, Eq. (115)
remains valid, while the normal density reduces to

nqα = nα�α. (117)

Hence, the Fermi-liquid effects in the diffusion coefficient Dnp

arise by replacing n2
qnn2

qp with R2 in the numerator, while em-
ploying the general expression (59) for the normal densities
in the denominator. In the case of a nonsuperfluid mixture, the
relation (114) turns into (cf. Eq. (113) in Ref. [74])12

Dnp = − μpμnn2
nn2

pT

(μnnn + μpnp)2Jnp
. (118)

E. Entropy

Let us now derive the equation for the entropy density.
Multiplying Eq. (71) by ln[(1 − F (α)

p+Qα
)/F (α)

p+Qα
] and sum-

ming the result over the quantum states and particle species
indices, one obtains

∂S

∂t
+ div

⎛
⎝∑

pσα

∂E(α)
p+Qα

∂p
σ

(α)
p+Qα

⎞
⎠ = �s, (119)

where

�s = −
∑
pσα

ln

( F (α)
p+Qα

1 − F (α)
p+Qα

)
Iα[F] (120)

is the entropy production rate.
Let us first consider the expression (120). Plugging the

expansion (77) together with Eq. (98) into it and linearizing
the result with respect to φα , one gets

�s = −
∑
pσα

ln

⎛
⎝ F (α)

p+Qα,0

1 − F (α)
p+Qα,0

⎞
⎠Iα[F] − 1

T

∑
pσα

φαIα[F]

= 1

T

∑
pσα

(
E(α)

p+Qα
− pu

)
Iα[F] − 1

T

∑
pσα

φαIα[F]. (121)

The first term in this expression equals zero due to the energy
and momentum conservation in collision events. Substitution

12The expression in Ref. [74] contains an additional constant c in
the denominator because the diffusion currents in that paper have the
dimension of number density.
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of Eq. (95) into the second term gives

�s = 1

T

∑
αα′

[
γαα′−

(
γαα

μα

c2
+ γαβ

μβ

c2

)nqα′

ρq

]
∇μα′

∑
pσ

pφα

× ∂f(α)
p

∂E (α)
p

= 1

T

R

ρq

μnμp

c2

(
1

m∗
nnn�n

∑
pσ

pφn

∂f(n)
p

∂E (n)
p

− 1

m∗
pnp�p

∑
pσ

pφp
∂f(p)

p

∂E (p)
p

)(∇μn

μn
− ∇μp

μp

)
,

(122)

where to obtain the second equality we used Eq. (55). Now,
plugging expression (99) together with Eq. (105) into (122),
and using Eqs. (31) and (59), one finds

�s = 1

T

μnμp

c2

nqn�jp − nqp�jn

ρq

(∇μn

μn
− ∇μp

μp

)
. (123)

In view of the definition (91) and the relation (106), one can
transform Eq. (123) into

�s = −μp

T

(∇μp

μp
− ∇μn

μn

)
�jp. (124)

Expressing �jp from Eq. (108) one verifies that �s � 0, as it
should be. Applying again the relation (106) to the expression
(124), one gets

�s = − 1

T

∑
α

�jα∇μα. (125)

In this form, the entropy production rate coincides with the
phenomenological relation (C20) for uncharged mixture at
constant T . In the limit of nonrelativistic equation of state,
the entropy production rate reduces to the standard expression
[12]:

�s = − 1

T

(∇μn

mn
− ∇μp

mp

)
mp�jp. (126)

Let us now turn to the calculation of the entropy current
density [see the term under divergence in Eq. (119)]. Lineariz-
ing it using Eqs. (18), (22), (46), and (48), one obtains13

∑
pσα

∂E(α)
p+Qα

∂p
σ

(α)
p+Qα

≈
∑
pσα

[
∂�H (α)

p

∂p
σ

(α)
p,0 + E (α)

p

T

∂E (α)
p

∂p

∂f(α)
p

∂E (α)
p

× (
�H (α)

p − pVqα

)]
, (127)

where σ
(α)
p,0 is the entropy density calculated for the distri-

bution function (26). Substituting Eq. (48) into (127) and
accounting for Eqs. (89), one sees that the first two terms
in the expression (127) cancel out. Thus, the entropy current

13We remind the reader that, as argued in Sec. IV, these equa-
tions can be used if one identifies Vqα with u + Viα .

density becomes

∑
pσα

∂E(α)
p+Qα

∂p
σ

(α)
p+Qα

=
∑

α

SαVqα, (128)

where Sα is the partial entropy density given by the expression
(88). Consequently, the entropy generation equation (119)
takes the form

∂S

∂t
+ div(SnVqn + SpVqp) = �s. (129)

One sees that the vectors Vqα = u + Viα have the meaning of
the corresponding partial entropy velocities. If the dissipative
terms can be ignored, this equation reduces to the standard
nondissipative form [12]

∂S

∂t
+ div(Su) = 0. (130)

For a deeper understanding of the nature of the velocities
Vqα let us sum Eq. (71) over the quantum states. As a result,
we obtain the “continuity equation” for the Bogoliubov exci-
tations that has the form

∂

∂t

∑
pσ

F (α)
p+Qα

+ div

⎛
⎝∑

pσ

∂E(α)
p+Qα

∂p
F (α)

p+Qα

⎞
⎠ =

∑
pσ

Iα[F].

(131)
Note that the number of Bogoliubov excitations is not nec-
essarily conserved (see Appendix E for details). Hence, the
right-hand side of Eq. (131) is generally nonzero. Linearizing
the current density of Bogoliubov excitations, one gets

∑
pσ

∂E(α)
p+Qα

∂p
F (α)

p+Qα
≈
∑
pσ

[
∂�H (α)

p

∂p
f(α)
p + ∂E (α)

p

∂p

∂f(α)
p

∂E (α)
p

× (
�H (α)

p − pVqα

)]
. (132)

It is easy to see that the first two terms under the sum here
can be combined into the total derivative over p. Hence, these
terms disappear after the summation and one finally obtains

∑
pσ

∂E(α)
p+Qα

∂p
F (α)

p+Qα
≈
∑
pσ

f(α)
p Vqα. (133)

Thus, one can say that the partial entropy moves together with
the Bogoliubov excitations. This result might be expected,
since the distribution function F (α)

p+Qα
of these excitations

determines the partial entropy in the system [see Eqs. (17)
and (88)]. However, the nontrivial result is that in a strongly
interacting mixture the partial entropy current is generally not
collinear with the normal current of the corresponding particle
species [see the first two terms in Eq. (52)]. This property is in
sharp contrast with the case of a nonsuperfluid mixture, where
these currents are always collinear, so that

jα = nαVqα. (134)

To understand why the normal current densities in a superfluid
mixture generally depend on both the velocities Vqn and Vqp,
consider, for simplicity, a point in space where Qn = Qp = 0.
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Then, substituting Eqs. (20) and (47) into (37) and linearizing
the obtained expression with respect to Vqα , one gets

jα =
∑
pσ

(
∂ε(α)

p

∂p

∂f(α)
p

∂Ep
�H (α)

p + ∂�H (α)
p

∂p
n(α)

p

)

−
∑
pσ

∂ε(α)
p

∂p

∂f(α)
p

∂Ep
pVqα

=
∑
pσ

(
∂ε(α)

p

∂p

∂f(α)
p

∂Ep
− ∂n(α)

p

∂p

)
�H (α)

p

−
∑
pσ

∂ε(α)
p

∂p

∂f(α)
p

∂Ep
pVqα, (135)

where the second equality is obtained after integration by
parts. In the nonsuperfluid mixture, the first sum in this equa-
tion vanishes and one arrives at the usual expression for the
particle current density (see, e.g., Ref. [52]). In fact, it is not
necessary to know the energy correction �H (α)

p to calculate
jα in this case. In contrast, in the superfluid mixture, this sum
becomes comparable to the second one and hence additional
terms from �H (α)

p , containing both the vectors Vqn and Vqp,
come into play [see Eq. (48)].

V. CHARGED MIXTURES

In this section we generalize the results of the previous
section to charged mixtures (e.g., neutrons, protons, and elec-
trons). For simplicity, we assume that the magnetic field in
the system is absent. If the particle species α possesses an
electrical charge eα , the “superfluid” equation (73) should be
replaced with [51]

∂Qα

∂t
= −∇μ̆α + eαE, (136)

where E is the electric field. As before, the difference between
μ̆α and μα will be ignored in the subsequent analysis. For the
sake of convenience, let us introduce the vectors bα = ∇μα −
eαE, so that Eq. (136) becomes

∂Qα

∂t
= −bα. (137)

For our particular system en = 0, ep = q, where q is the
elementary charge. To make the electrical quasineutrality pos-
sible, we should add a third constituent labeled “e” (e.g.,
electrons) with ee = −q. This constituent is assumed to be
composed of noninteracting fermions (an ideal Fermi gas).
The kinetic equation for the “e” constituent takes the form
[75]

∂N (e)
p

∂t
+ ∂ε(e)

p

∂p

∂N (e)
p

∂r
− eeE

∂N (e)
p

∂p
= I (e)[F ,N ], (138)

where by F and N we denote, respectively, the set of distribu-
tion functions F (α)

p+Qα
(α = n, p) and N (e)

p . The partial entropy
associated with the particle species “e” is given by

Se =
∑
pσ

σ (e)
p , (139)

where

σ (e)
p = −(1 − N (e)

p

)
ln
(
1 − N (e)

p

)− N (e)
p lnN (e)

p . (140)

The approximate solution of Eq. (138) is sought in the form

N (e)
p = N (e)

p,0 + n(e)
1 = N (e)

p,0 − ∂N (e)
p,0

∂ε
(e)
p

φe, (141)

where the equilibrium distribution function is given by the
usual Fermi-Dirac distribution,

N (e)
p,0 = 1

1 + e(ε(e)
p −μe−p u)/T

, (142)

Note that, in contrast to superfluids “n” and “p”, the departure
from the equilibrium does not modify the energy ε(e)

p , since it
is independent of the distribution functions.

Repeating the derivation of Eq. (87) from Sec. IV, one
obtains for α = n, p

∑
α′=n,p

Rα′α
μα′

c2

∂u
∂t

+
∑

α′=n,p

Rα′αbα′ + Sα∇T =
∑
pσ

pIα[F ,N ].

(143)
In turn, similar derivation for particles “e” yields

ne
μe

c2

∂u
∂t

+ nebe + Se∇T =
∑
pσ

pIe[F ,N ]. (144)

Our purpose is to find the connection between the dissipa-
tive currents and the vectors bα . To this aim, one can again
assume the ansatz (99) for the superfluid species “n” and “p”,
and the similar ansatz

φe = p Vie (145)

for the species “e”. Here, as before, the dependence of the
vectors Viα on the momentum variable p is neglected. Hence,
following the derivation of Sec. IV D, one arrives at the
following expressions for the diffusion current densities [cf.
Eq. (104)]:

�jn = RnnVin + RnpVip, (146)

�jp = RpnVin + RppVip, (147)

�je = neVie. (148)

Plugging now expansions (77) and (141) into the right-hand
sides of Eqs. (143) and (144), in which the temperature gradi-
ent is set to zero, one finds(

Rnn
μn

c2
+ Rpn

μp

c2

)
∂u
∂t

+ Rnnbn + Rpnbp

= Jpnwpn + Jenwen, (149)(
Rpp

μp

c2
+ Rnp

μn

c2

)
∂u
∂t

+ Rppbp + Rnpbn

= −Jpnwpn − Jpewpe, (150)

ne
μe

c2

∂u
∂t

+ nebe = −Jenwen + Jpewpe, (151)
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where we introduced a notation

wαβ = Viα − Viβ (152)
and where Jαβ are the momentum transfer rates (see
Appendix E). To exclude the time derivative of the velocity
u from these equations, one can sum them up, which results
in

ρq
∂u
∂t

= −nqnbn − nqpbp − nebe, (153)

where the normal energy density ρq now equals

ρq = μn

c2
nqn + μp

c2
nqp + μe

c2
ne. (154)

After ∂u/∂t is excluded, only two out of three of Eqs. (149)–
(151) remain independent. Taking, for instance, Eqs. (150)
and (151), using Eq. (153), and excluding wpe with the iden-
tity wpe ≡ wpn − wen, one obtains

−μpμnR + μeμpneRpp

c2ρq

(
bn

μn
− bp

μp

)
+ μeμnneRnp + μeμpneRpp

c2ρq

(
bn

μn
− be

μe

)
= −(Jpn + Jpe)wpn + Jpewen, (155)

μeμpnenqp

c2ρq

(
bn

μn
− bp

μp

)
− μene

μnnqn + μpnqp

c2ρq

(
bn

μn
− be

μe

)
= Jpewpn − (Jen + Jpe)wen. (156)

Equations (155)–(156) allow us to express the vectors wαβ

through the vectors dα . In turn, Eqs. (146)–(148) together with
the condition (106) relate the vectors �jα and wαβ :

�jn = − (μpR − μeneRnp)wpn + μenenqnwen

c2ρq
, (157)

�jp = (μnR + μeneRpp)wpn − μenenqpwen

c2ρq
, (158)

�je = ne
(c2ρq − μene)wen − (μpRpp + μnRnp)wpn

c2ρq
. (159)

In the case of isothermal matter, the phenomenological
expression for the diffusion currents is [cf. Eq. (C14)]

�jα = −
∑
α′

Dαα′
bα′

T
. (160)

The relation (106) allows us to exclude the diagonal diffusion
coefficients Dαα and, after accounting for Eq. (B18), one
arrives at

�jα =
∑
β �=α

Dαβ

(
bβ

μβ

− bα

μα

)
. (161)

Now, plugging the quantities wαα′ obtained as a solution to
Eqs. (155)–(156) into Eqs. (158)–(159) and comparing the
result with the phenomenological expression (161), one can
find the formulas for the diffusion coefficients Dαα′ . We prefer
not to present these lengthy expressions here, but they can
be easily found if necessary. Clearly, the procedure described
above can be easily extended to a mixture of arbitrary number
of species.

What remains to be done is to find an expression for
the entropy production rate. Repeating the derivation from
Sec. IV E, one gets

�s = − 1

T

∑
pσα

pViαIα[F ,N ] = − 1

T

∑
pσ

(wpnpIp[F ,N ]

+ wenpIe[F ,N ]). (162)

Here, the first equality coincides with Eq. (121) except that
the summation is now performed over the three particle

species, α = n, p, e. In the second equality, we used the fact
that

∑
pσα pIα[F ,N ] = 0. Plugging in the left-hand side of

Eqs. (155) and (156) instead of
∑

pσ pIα[F ,N ] and using
expressions (158) and (159), we arrive at

�s = − 1

T

[
μp�jp

(
bp

μp
− bn

μn

)
+ μe�je

(
be

μe
− bn

μn

)]
.

(163)

To bring this expression into the form of the phenomenolog-
ical Eq. (C20), one needs just to apply the relation (106). To
verify that the entropy production rate (163) is non-negative,
one should substitute the right-hand sides of Eqs. (155) and
(156) instead of

∑
pσ pIα[F ,N ] into Eq. (162). The resulting

quadratic form

�s = 1

T

(
Jpnw2

pn + Jenw2
en + Jpew2

pe

)
(164)

is obviously positive-definite.

VI. SUMMARY

In this paper we have developed a general formalism for
studying particle diffusion in superfluid mixtures of strongly
interacting Fermi liquids. Our results can be summarized as
follows:

(1) The diffusion in superfluid mixtures is manifested
through the modification of the expressions for the
normal currents of all particle species α = n, p in the
mixture. These normal currents can be introduced into
the theory by minimizing the thermodynamic potential
(44). They can be expressed in terms of the velocities
Vqα , which are conjugate variables to the momenta of
species α. In the approximation of small velocities,
the normal component of each current density jα is
a linear combination of the velocities Vqn and Vqp.
The coefficients in this linear combinations constitute
the normal entrainment matrix, Rαα′ , introduced in this
work for the first time.

(2) The velocities Vqα can be interpreted as partial en-
tropy velocities for particle species α or, equivalently,
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as the velocities of the flow of Bogoliubov excita-
tions α. These velocities become independent and
self-contained variables in superfluid mixtures, being
generally not collinear to the corresponding normal
current densities, as well as to the momentum densi-
ties, associated with the motion of thermal excitations
of different particle species. Here we find some resem-
blance to the Carter’s formalism (see, e.g., Ref. [76]),
in which the entropy current is treated on an equal
footing with other conserved currents of a multifluid
mixture.

(3) To study diffusion effects in superfluid mixtures, we
applied the Boltzmann-like kinetic equation for Bo-
goliubov thermal excitations, supplementing it with
the continuity and superfluid equations for each par-
ticle species. Using the Chapman-Enskog method and
assuming the standard ansatz (99) for the nonequilib-
rium correction to the distribution function, we again
arrived at the velocities Vqα . That is, these velocities
are natural variables for describing diffusion processes
in superfluid Fermi mixtures. In particular, the fric-
tion force between different particle species “n” and
“p” appears to be directly proportional to Vqn − Vqp

[see, e.g., Eq. (107)]. Somewhat loosely, one may say
that the “friction of entropy currents” produces heat
(the entropy velocity Vqα is generally not equal to the
normal fluid velocity of particle species α, so that this
result is nontrivial).

(4) Using transport equations for Bogoliubov excitations,
we obtained general expressions for the diffusion coef-
ficients of a mixture of two strongly-interacting Fermi
superfluids [see Eqs. (112) and (114)]. The diffu-
sion coefficients depend on the matrix Rαα′ (which is
responsible for the Fermi-liquid/entrainment effects
in the mixture) and on the momentum transfer rates
Jαβ . The general expression for Jαβ is presented in
Appendix E and formally has the same structure as
Jαβ for a mixture of two weakly interacting superfluid
Fermi gases.

(5) There is a quantitative difference between the proce-
dure of calculation of diffusion coefficients for the
nonsuperfluid and superfluid Fermi mixtures. In the
first case, the inclusion of the Fermi-liquid effects is
quite formal. Indeed, after expanding the quasiparticle
distribution function in powers of the Knudsen number
[cf. Eq. (77)],

N (α)
p = N (α)

p,0 + n̄(α)
1 , (165)

where [cf. Eq. (79)]

N (α)
p,0 = 1

1 + e(ε(α)
p +�H (α)

p −p u)/T
, (166)

and substituting this representation into transport
equations, the resulting (linearized) equations for the
distribution function corrections n̄(α)

1 will be formally
identical to the corresponding equations for a mixture
of weakly interacting Fermi gases (see, e.g., Ref. [11]).
The expression for the current densities is also identi-

cal to its counterpart in weakly interacting mixtures
(see the discussion at the end of Sec. IV E). As a
consequence, there is no need for calculation of the
energy corrections �H (α)

p , and the Landau parameters
do not appear in the expression (118) for the diffusion
coefficients. In contrast, in the superfluid mixture one
needs to determine the Bogoliubov excitation energy
correction, and the Landau parameters explicitly ap-
pear in the diffusion coefficients [see Eq. (114)]. The
formal reason for this difference is discussed at the end
of Sec. (IV E).

(6) The results discussed above were generalized to the
case of charged mixtures in Sec. V. The extension of
these results to arbitrary number of particle species in
the mixture is straightforward.

Summarizing, the framework for treating particle diffusion
developed in the present work opens the way for systematic
calculations of diffusion coefficients in superfluid, strongly
interacting Fermi mixtures, in particular in superfluid neutron-
star matter.
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APPENDIX A: ELEMENTS OF MATRICES γαβ, Kαβ, Yαβ,
AND Rαβ IN VARIOUS LIMITING CASES

1. The case of one superfluid and one normal
Fermi liquid (�n = 1)

Assume that the species “p” is superfluid, while the species
“n” is normal, i.e., the function �n = 1 [see Eq. (32)]. In this
limit, the elements of the matrix γαα′ reduce to

γnn = 1

m∗
n

, (A1)

γnp = Gnpnp(1 − �p)

S , (A2)

γpp = 1

m∗
p

Snsf

S , (A3)

γpn = 0. (A4)

In turn, the elements of the matrix Kαα′ become

Knn = Gnnm∗
n (np + Gppm∗

p�p) − G2
npm∗

nm∗
p�p

S , (A5)

Knp = Gnpm∗
pnp�p

S , (A6)

Kpp = Gppm∗
p�p(nn + Gnnm∗

n ) − G2
npm∗

pm∗
n�p

S , (A7)

Kpn = Gpnm∗
nnn

S . (A8)
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The superfluid entrainment matrix is given by

Ynn = Ynp = Ypn = 0, (A9)

Ypp = np

m∗
pc2

Snsf

S (1 − �p), (A10)

while the normal entrainment matrix equals

Rnn = nn, (A11)

Rnp = 0, (A12)

Rpp = np
Snsf

S �p, (A13)

Rpn = nnnpm∗
n (1 − �p)Gnp

S . (A14)

In these expressions the function S is given by Eq. (36), which
can be represented in the considered limiting case as

S = (nn + Gnnm∗
n )(np + Gppm∗

p�p) − G2
npm∗

nm∗
p�p. (A15)

Similarly, the function Snsf coincides with S calculated for a
completely nonsuperfluid mixture (i.e., assuming �n = �p =
1)

Snsf = (nn + Gnnm∗
n )(np + Gppm∗

p) − G2
npm∗

nm∗
p

= m∗
nm∗

pc2

μnμp

[
nnnp − Gnp

μnnn + μpnp

c2

]
. (A16)

Here, the second equality is obtained with the help of Eq. (14).
As follows from Eqs. (A11)–(A14), in the case when both
species are nonsuperfluid (�n = �p = 1), one has Rnn = nn,
Rpp = np, and Rnp = Rpn = 0.

2. The case of strong superfluidity
of one of the constituents (�p → 0)

Assume now that particle species “p” is strongly super-
fluid, �p → 0. Then the matrix γαα′ simplifies to

γnn = nn + Gnnm∗
n

m∗
n (nn + Gnnm∗

n�n)
, (A17)

γnp = Gnp

nn + Gnnm∗
n�n

, (A18)

γpp = (np + Gppm∗
p)(nn + Gnnm∗

n�n) − G2
npm∗

nm∗
p�n

m∗
pnp(nn + Gnnm∗

n�n)
,

(A19)

γpn = nnGnp(1 − �n)

np(nn + Gnnm∗
n�n)

, (A20)

while the matrix Kαα′ reduces to

Knn = Gnnm∗
n�n

(nn + Gnnm∗
n�n)

, (A21)

Knp = 0, (A22)

Kpp = 0, (A23)

Kpn = Gpnm∗
nnn�n

np(nn + Gnnm∗
n�n)

. (A24)

The superfluid entrainment matrix becomes

Ynn = nn(nn + Gnnm∗
n )

c2m∗
n (nn + Gnnm∗

n�n)
(1 − �n), (A25)

Ypp = (np + Gppm∗
p)(nn + Gnnm∗

n�n) − G2
npm∗

nm∗
p�n

c2m∗
p(nn + Gnnm∗

n�n)
,

(A26)

Ypn = Ynp = nnGnp(1 − �n)

c2(nn + Gnnm∗
n�n)

, (A27)

while the normal entrainment matrix is

Rnn = nn(nn + Gnnm∗
n )�n

(nn + Gnnm∗
n�n)

, (A28)

Rnp = 0, (A29)

Rpp = 0, (A30)

Rpn = nnm∗
nGnp�n

nn + Gnnm∗
n�n

. (A31)

In the limit when both particle species are strongly superfluid,
�n → 0 and �p → 0, one has from these expressions Rnn =
Rpp = Rnp = Rpn = 0.

3. The case of two independent Fermi liquids (Gnp = Gpn = 0)

Assume now that our mixture is composed of two super-
fluid Fermi liquids, which do not “feel” each other in a sense
that the Landau parameters f np

1 = f pn
1 = 0, i.e., Gnp = Gpn =

0; see Eq. (15).
In this case,

γαα = 1

m∗
α

nα + Gααm∗
α

nα + Gααm∗
α�α

= 1

m∗
α�α + μα

c2 (1 − �α )
,

(A32)

Kαα = Gααm∗
α�α

nα + Gααm∗
α�α

=
(
m∗

α − μα

c2

)
�α

m∗
α�α + μα

c2 (1 − �α )
, (A33)

γαβ = Kαβ = 0, (A34)

where we applied the relation (14). In turn, the matrices Yαα′

and Rαα′ reduce to

Yαα = nα (1 − �α )

m∗
αc2�α + μα (1 − �α )

, (A35)

Rαα = nαm∗
αc2�α

m∗
αc2�α + μα (1 − �α )

, (A36)

Yαβ = Rαβ = 0. (A37)

As it is expected, the nondiagonal elements of all matrices
vanish in this case.

APPENDIX B: RELATIVISTIC HYDRODYNAMICS
OF SUPERFLUID MIXTURES

In this Appendix, we briefly describe the phenomenolog-
ical relativistic hydrodynamics of superfluid mixtures, since
we refer to some of its equations in the main text of the
paper. We use the version of hydrodynamics developed in
Refs. [8,10,70,71,74]. Despite this hydrodynamics taking into
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account an extremely rich set of various dissipative phenom-
ena, here we restrict ourselves to considering its simplified
version, which only allows for diffusion as a dissipative mech-
anism. The effects of diffusion have been incorporated into the
relativistic hydrodynamics of normal and superfluid mixtures
in Refs. [10,74]. We will follow these works in what follows.
For simplicity, we assume that there are no vortices in the
system and also ignore the effects related to polarization and
magnetization of the medium. In addition, we neglect possible
chemical reactions converting different particle species into
each other. With these reservations, the equations of superfluid
relativistic hydrodynamics consist of

(i) The energy-momentum conservation law

∂T μν

∂xν
= 0, (B1)

where

T μν = E + P

c2
uμuν + Pgμν +

∑
αα′

Yαα′
[
c2w

μ
(α)w

ν
(α′ )

+ μαw
μ

(α′ )u
ν + μα′wν

(α)u
μ
]+ T μν

EM . (B2)

(ii) The particle conservation law for each species α

∂ jμ(α)

∂xμ
= 0, (B3)

where

jμ(α) = nαuμ +
∑
α′

Yαα′w
μ

(α′ ) + � jμ(α). (B4)

(iii) The constraints on the four-velocities and four-
currents:

uμw
μ
(α) = 0, (B5)

uμ� jμ(α) = 0. (B6)

(iv) The second law of thermodynamics

dE = T dS +
∑

α

μαdnα +
∑
αα′

Yαα′

2
d
(
w(α)μw

μ

(α′ )

)
.

(B7)

(v) The Maxwell equations

∂νFμν = 4π

c
Jμ, ∂μF νξ + ∂ξ Fμν + ∂νF ξμ = 0.

(B8)

In the formulas above, T μν
EM is the standard electromagnetic

energy-momentum tensor, Fμν is the electromagnetic field
tensor, Jν = ∑

α eα jμ(α) is the charge current density, eα is the
charge of particle species α, w

μ
(α) is the superfluid four-vector

given below, � jμ(α) is the dissipative correction to the particle
current density, E is the energy density in the comoving frame
of reference [uμ = (c, 0, 0, 0)], P is the pressure given by
standard formula

P = −E + T S +
∑

α

nαμα, (B9)

and gμν = diag(−1, 1, 1, 1) is the Minkowski metrics. In the
above expressions and in the text below, a summation is as-
sumed over repeated space-time indices μ, ν, and ξ . Note,
however, that the sum over the particle species indices α and
α′ will be written explicitly to facilitate comparison with the
main text of the paper. The superfluid four-velocity can be
represented as

w
μ
(α) = Qμ

(α) − μα

c2
uμ, (B10)

where we introduced the half Cooper-pair four-momentum

Qμ
(α) = 1

2
∂μ�α − eα

c
Aμ, (B11)

�α is the phase of the Cooper-pair condensate wave function,
and Aμ is the four-potential of the electromagnetic field.

Equations (B1)–(B11) allow one to obtain the entropy gen-
eration equation,

∂μSμ = �s, (B12)

where

Sμ = Suμ −
∑

α

μα

T
� jμ(α) (B13)

is the entropy four-current and

�s = −
∑

α

� j(α)μdμ
(α) (B14)

is the entropy generation rate. In this expression

dμ
(α) = (∂μ + uμuν∂ν )

(μα

T

)
− eαEμ

T
, (B15)

where

Eμ = uν

c
Fμν. (B16)

If the gradients are small and there is no preferred direction,
the current corrections � jμ(α) can be presented as

� jμ(α) = −
∑
α′

Dαα′dμ

(α′ ). (B17)

It follows from the Onsager principle that the diffusion coef-
ficients Dαα′ must be symmetric,

Dαα′ = Dα′α. (B18)

APPENDIX C: THE NONRELATIVISTIC LIMIT
OF SUPERFLUID HYDRODYNAMICS

Let us consider a reference frame in which all the hydro-
dynamic velocities are nonrelativistic, i.e. |ui|, |c2Qi

α/μα| �
c, where the index i runs over the spatial coordinates (as
in Sec. II, we only consider fluid motions for which such
reference frame does exist). Our aim is to find the form of
hydrodynamic equations appropriate for this frame. Using the
relation (B5), one can rewrite the expression (B10) as

w0
(α) = uQα

u0
− μα

c2

u2

u0
, (C1)

wwwα = Qα − μα

c2
u, (C2)

025814-20



DIFFUSION IN SUPERFLUID FERMI MIXTURES: … PHYSICAL REVIEW C 108, 025814 (2023)

where u, wwwα , and Qα are the spatial parts of the four-vectors
uμ, w

μ
(α), and Qμ

(α). Substituting these expressions together
with the expansion

u0 ≈ c

(
1 + 1

2

u2

c2

)
(C3)

into (B2) and neglecting the terms ∼u/c in that equation, one
gets

T i0 ≈ cρqu + c
∑
αα′

Yαα′μαQα′ + T i0
EM, (C4)

T i j ≈ ρquiu j + c2
∑
αα′

Yαα′Qi
αQ j

α′ + Pδi j + T i j
EM, (C5)

where δi j is the the Kronecker delta and the following notation
has been introduced:

ρq = T S

c2
+
∑

α

μα

c2

(
nα −

∑
α′

Yαα′μα′

)
. (C6)

This combination arises in expressions (C4)–(C5) after one
accounts for the definition (B9). Equation (B1) can be repre-
sented as

1

c

∂T i0

∂t
+ ∂T i j

∂x j
= 0, (C7)

where one should employ the expressions (C4) and (C5). Us-
ing Eqs. (B7) and (B9), one gets the following Gibbs-Duhem
relation

dP ≈ SdT +
∑

α

nαdμα +
∑
αα′

Yαα′

2
d (wwwαwwwα′ ), (C8)

where we have neglected the terms containing w0
(α)w

0
(α′ ) ∼

(u2/c2)wαwα′ [see Eqs. (C1) and (C2)].
In the present paper, we work in the linear approximation in

hydrodynamic velocities. Thus, it is instructive to write down
the phenomenological equations in the same approximation.
Plugging Eqs. (C4) and (C5) into (C7) and neglecting the
terms quadratic in u and Qα , we obtain

ρq
∂u
∂t

+
∑
αα′

μαYαα′
∂Qα′

∂t
+ ∇P = −∂T μν

EM

∂xν
. (C9)

Here we used the fact that the time derivatives of the quantities
ρq, Yαα′ , and μα are of the linear order smallness in hydro-
dynamic velocities [see Eqs. (82)–(85) and the discussion
afterwards]. Expressing the pressure gradient using Eq. (C8),
and neglecting the small terms ∝wwwαwwwα′ , we present Eq. (C9)
in the final form

ρq
∂u
∂t

+
∑
αα′

μαYαα′
∂Qα′

∂t
+ T ∇S +

∑
α

nα (∇μα − eαE) = 0.

(C10)
To derive this equation, we noted that the right-hand side of
Eq. (C9) equals the Lorentz force (see, e.g., Ref. [77]). Since
the magnetic field in the present paper is neglected, we only
keep the electrical part of the Lorentz force in Eq. (C10).

In the nonrelativistic limit the particle current density ac-
quires the form

j0
(α) = cnα, jα = YααQα + YαβQβ + nqαu + �j(α). (C11)

To derive Eq. (C11), one needs to plug Eq. (B10) into (B4)
and take into account Eqs. (B5) and (B6). The continuity
equation (B3) transforms into

∂nα

∂t
+ divjα = 0. (C12)

The vectors �j(α) are the linear functions of the spatial
components of the four-vectors dμ

(α) [see Eq. (B17)]. In the
nonrelativistic limit, Eμ = (0, E), where E is the electric field.
Hence, one can write

d0
(α) = 0, d(α) = ∇

(μα

T

)
− eαE

T
(C13)

and, in view of the relation (B17), one has

�jα = −
∑
α′

Dαα′

[
∇
(μα

T

)
− eαE

T

]
. (C14)

Since, according to the expressions (B10) and (B11), the
superfluid four-velocity contains the gradient of the scalar
function ∂μ�α , it obviously satisfies the following constraint:

∂

∂xμ

(
wν

(α) + eα

c
Aν + μα

c2
uν

)

− ∂

∂xν

(
w

μ
(α) + eα

c
Aμ + μα

c2
uμ

)
= 0. (C15)

Assuming that the index μ = 0 and the index ν runs over the
spatial coordinates, one gets from this equation, after using
Eq. (C2),

1

c

∂

∂t

(
Qα + eα

c
A
)

+ ∇
(

w0
(α) + eα

c
A0 + μα

c2
u0

)
= 0.

(C16)
Plugging Eqs. (C1) and (C3) into (C16) one finally arrives at

∂Qα

∂t
+ ∇

[
μα

(
1 − 1

2

u2

c2

)
+ uQα

]
− eαE = 0, (C17)

where the electric field is expressed through the components
of the four-potential:

E = −∇A0 − 1

c

∂A
∂t

. (C18)
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In the linear approximation in hydrodynamic velocities this
equation reduces to14

∂Qα

∂t
+ ∇μα − eαE = 0. (C19)

Substituting the vector (C13) into Eq. (B14), one obtains
the nonrelativistic expression for the entropy production rate

�s = −
∑

α

�jα

[
∇
(μα

T

)
− eαE

T

]
. (C20)

APPENDIX D: THE EFFECTIVE INTERACTION
HAMILTONIAN

Let us consider a mixture of two superfluid Fermi liquids.
It is assumed that the scattering of the Landau-liquid quasi-
particles can be described by an effective Hamiltonian of the
following form:

Ĥv = 1

2

∑
1,2,3,4

(1, 2|V |3, 4)â†
1â†

2â3â4. (D1)

Here âk and â†
k are, respectively, the destruction and creation

operators for a quasiparticle in a quantum state k. Each quan-
tum state k is characterized by the set of quantum numbers
(Qak + kk, sk, ak ), where Qak + kk is the quasiparticle mo-
mentum, sk = ±1 is the spin index, and ak = ±1 is the isospin
index (ak = 1 can be associated with the particle species
“p”, while ak = −1 with the species “n”). In what follows
we also make use of the notation −k = (Qak − kk,−sk, ak ).
We do not specify the dependence of the matrix elements
(1, 2|V |3, 4) on the quantum state variables, but assume that
they contain the following Kronecker deltas:

(1, 2|V |3, 4) → (1, 2|V |3, 4)δa1+a2,a3+a4δk1+k2,k3+k4 , (D2)

ensuring conservation of the total isospin and momentum in
particle collisions. Note that, strictly speaking, in our nota-
tion the momentum of a quasiparticle equals Qak + kk and,
consequently, the momentum conservation law reads Qa1 +
k1 + Qa2 + k2 = Qa3 + k3 + Qa4 + k4. However, it is easy
to see that, in view of the isospin conservation, the vectors
Qai cancel out.

14The superfluid equation (C19) should be compared with the more
general, but similar, Eq. (136). Note that Eq. (136) was obtained
without linearization with respect to hydrodynamic velocities. The
discrepancy between Eqs. (136) and (C19) arises for two reasons.
First, the chemical potentials in two equations are defined in dif-
ferent ways (measured in different reference frames). However, as
already discussed, this difference is of the second-order smallness
in the hydrodynamic velocities and can be ignored in the linear
approximation. Second, the nonequilibrium chemical potential μ̆α

also contains a dissipative correction. For small deviations from
the thermodynamic equilibrium this correction is exclusively due
to the bulk viscosity. However, all the viscous terms were omitted
in the phenomenological hydrodynamics of Appendix B, on which
the derivation of Eq. (C19) is based. The form of the superfluid
equation with the dissipative correction is given in Ref. [71].

Taking into account the commutation rules for operators
âk and â†

k , one can antisymmetrize the expression (D1) and
present it as

Ĥv = 1

4

∑
1,2,3,4

〈1, 2|V |3, 4〉aâ†
1â†

2â3â4, (D3)

where the matrix elements 〈1, 2|V |3, 4〉a are given by15

〈1, 2|V |3, 4〉a = 1
2 [(1, 2|V |3, 4) − (1, 2|V |4, 3)

− (2, 1|V |3, 4) + (2, 1|V |4, 3)] (D4)

and have the following property:

〈1, 2|V |3, 4〉a = −〈1, 2|V |4, 3〉a = −〈2, 1|V |3, 4〉a

= 〈2, 1|V |4, 3〉a, (D5)

Note that these elements contain the same Kronecker deltas as
(1, 2|V |3, 4), i.e.,

〈1, 2|V |3, 4〉a → 〈1, 2|V |3, 4〉aδa1+a2,a3+a4δk1+k2,k3+k4 .

(D6)

We added a subscript “a” to the matrix element 〈1, 2|V |3, 4〉a

in order to distinguish it from the elements (D9)–(D13) intro-
duced below.

Let us now make the Bogoliubov transformation for the
Landau quasiparticle operators,

âk = ukb̂k + skv−kb̂†
−k, (D7)

where the coherence factors are given by Eqs. (6) and (8), and
the Bogolubov thermal excitation operators b̂k and b̂†

k obey
the canonical Fermi commutation relations. Substituting (D7)
into (D3), one can represent the Hamiltonian in the form

Ĥv =
∑

1,2,3,4

{
1

4
〈1, 2|V |3, 4〉bb̂†

1b̂†
2b̂3b̂4

+ 1

6
〈1, 2, 3|V |4〉bb̂†

1b̂†
2b̂†

3b̂4 + 1

6
〈1|V |2, 3, 4〉bb̂†

1b̂2b̂3b̂4

+ 1

24
〈1, 2, 3, 4|V |0〉bb̂†

1b̂†
2b̂†

3b̂†
4

+ 1

24
〈0|V |1, 2, 3, 4〉bb̂1b̂2b̂3b̂4,

}
, (D8)

15Note that in Eq. (D4) the matrix elements (2, 1|V |4, 3) and
(2, 1|V |3, 4) are equal, respectively, to (2, 1|V |4, 3) = (1, 2|V |3, 4)
and (2, 1|V |3, 4) = (1, 2|V |4, 3), so that (D4) can actually be repre-
sented as 〈1, 2|V |3, 4〉a = (1, 2|V |3, 4) − (1, 2|V |4, 3) [78].
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where the following coefficients have been introduced:

〈1, 2|V |3, 4〉b = u1u2u3u4〈1, 2|V |3, 4〉a + s1s2s3s4v1v2v3v4〈−4,−3|V | − 2,−1〉a

− s2s4u1v2u3v4〈1,−4|V |3,−2〉a − s2s3u1v2v3u4〈1,−3|V | − 2, 4〉a

− s1s4v1u2u3v4〈−4, 2|V |3,−1〉a − s1s3v1u2v3u4〈−3, 2|V | − 1, 4〉a, (D9)

〈1, 2, 3|V |4〉b = s2u1v2u3u4〈1, 3|V | − 2, 4〉a + s1s3s4v1u2v3v4〈−4, 2|V | − 3,−1〉a

+ s1v1u2u3u4〈3, 2|V | − 1, 4〉a + s2s3s4u1v2v3v4〈−4, 1|V | − 2,−3〉a

− s3u1u2v3u4〈1, 2|V | − 3, 4〉a − s1s2s4v1v2u3v4〈−4, 3|V | − 2,−1〉a, (D10)

〈1|V |2, 3, 4〉b = s4u1u2u3v4〈1,−4|V |3, 2〉a + s1s2s3v1v2v3u4〈−2,−3|V |4,−1〉a

+ s3u1u2v3u4〈1,−3|V |2, 4〉a + s1s2s4v1v2u3v4〈−4,−2|V |3,−1〉a

− s2u1v2u3u4〈1,−2|V |3, 4〉a − s1s3s4v1u2v3v4〈−4,−3|V |2,−1〉a, (D11)

〈1, 2, 3, 4|V |0〉b = 6s3s4u1u2v3v4〈1, 2|V | − 3,−4〉a, (D12)

〈0|V |1, 2, 3, 4〉b = 6s1s2v1v2u3u4〈−1,−2|V |3, 4〉a. (D13)

To obtain these expressions, one should use the relation (D5) together with the commutation relations for the operators b̂i and
b̂†

i . Collecting, for example, the terms with three destruction and one creation operators, one gets

1

4

∑
1,2,3,4

{s2u1v−2u3u4b̂†
1b̂−2b̂3b̂4 + s1v−1u2u3u4b̂−1b̂†

2b̂3b̂4 + s1s2s3v−1v−2v−3u4b̂−1b̂−2b̂†
−3b̂4

+ s1s2s4v−1v−2u3u−4b̂−1b̂−2b̂3b̂†
−4}〈1, 2|V |3, 4〉a

= 1

2

∑
1,2,3,4

{−s2u1v2u3u4〈1,−2|V |3, 4〉a + s1s2s3v1v2v3u4〈−3,−2|V | − 1, 4〉a}b̂†
1b̂2b̂3b̂4

= 1

6

∑
1,2,3,4

{s4u1u2u3v4〈1,−4|V |3, 2〉a + s1s2s3v1v2v3u4〈−3,−2|V | − 1, 4〉a

+ s3u1u2v3u4〈1,−3|V |2, 4〉a + s1s2s4v1v2u3v4〈−4,−2|V |3,−1〉a

− s2u1v2u3u4〈1,−2|V |3, 4〉a − s1s3s4v1u2v3v4〈−4,−3|V |2,−1〉a}b̂†
1b̂2b̂3b̂4

≡ 1

6

∑
1,2,3,4

〈1|V |2, 3, 4〉b b̂†
1b̂2b̂3b̂4. (D14)

In the second equality, accounting for the fact that there is a summation over all quantum numbers, we antisymmetrize the sum in
order to make the resulting matrix element 〈1|V |2, 3, 4〉b antisymmetric with respect to permutations of second, third, and fourth
quantum states. The same procedure allows us to obtain the (antisymmetric) matrix element 〈1, 2, 3|V |4〉b. The coefficients in
expression (D8) can be considered as matrix elements for different processes involving Bogoliubov excitations: the element
〈1, 2|V |3, 4〉b describes scattering 3, 4 → 1, 2, the elements 〈1, 2, 3|V |4〉b and 〈1|V |2, 3, 4〉b describe decay 4 → 1, 2, 3 and
coalescence 2, 3, 4,→ 1, while the matrix elements 〈1, 2, 3, 4|V |0〉b and 〈0|V |1, 2, 3, 4〉b describe creation and destruction of
four Bogoliubov excitations. However, since these excitations have positive energy, the last two processes are forbidden by the
energy conservation. Hence, these terms can be ignored, in particular, in calculations of Appendix E.

Note once again that the matrix elements (D9)–(D11) are constructed in such a way to make them antisymmetric with
respect to permutations of the excitations in the initial state, as well as in the final state. It can also be verified that the element
〈1, 2, 3|V |4〉b can be obtained from 〈1|V |2, 3, 4〉b by complex conjugation and interchanging the states 1 ↔ 4 and 2 ↔ 3.

Substituting Eq. (D6) into (D9)–(D11), one can verify that these matrix elements contain the following momentum Kronecker
deltas:

〈1, 2|V |3, 4〉b → 〈1, 2|V |3, 4〉bδk1+k2,k3+k4 , (D15)

〈1|V |2, 3, 4〉b → 〈1|V |2, 3, 4〉bδk1−k2,k3+k4 , (D16)

〈1, 2, 3|V |4〉b → 〈1, 2, 3|V |4〉bδk1+k2,k4−k3 . (D17)

At the same time, one cannot factor out the isospin Kronecker deltas from these matrix elements because the Bogoliubov
transformation involves two operators with different values of momentum, but with the same isospin index ak . The important
isospin-related property of the matrix elements (D15)–(D17), which holds true in superfluid mixtures, is that they remain nonzero
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only for transitions with even number of particles of each species. This obvious property is used in Appendix E to obtain the
collision integral (E2).

APPENDIX E: MOMENTUM TRANSFER RATES

The total collision integral for particle species α can be represented as a sum

Iα =
∑
α′

Iαα′ , (E1)

where Iαα′ is the part of the integral describing collisions with particle species α′. In contrast to Landau quasiparticles, the number
of Bogoliubov excitations is not necessarily conserved in the collisions. That is why, in addition to scattering, the collision
integral contains also the terms describing decay and coalescence events. In terms of the Bogoliubov thermal excitations, the
collision integral can be written as

Iαα′ =
∑

p2,p3,p4

{
1

1 + δα,α′
Wscat.1(4α3α′ |2α′1α )δ

(
E(α)

p4+Qα
+ E(α′ )

p3+Qα′ − E(α′ )
p2+Qα′ − E(α)

p1+Qα

)

× [F (α)
p4+Qα

F (α′ )
p3+Qα′

(
1 − F (α′ )

p2+Qα′

)(
1 − F (α)

p1+Qα

)− F (α)
p1+Qα

F (α′ )
p2+Qα′

(
1 − F (α′ )

p3+Qα′

)(
1 − F (α)

p4+Qα

)]
+ 1 − δα,α′

2
Wscat.2(4α′3α′ |2α1α )δ

(
E(α′ )

p4+Qα′ + E(α′ )
p3+Qα′ − E(α)

p2+Qα
− E(α)

p1+Qα

)
× [F (α′ )

p4+Qα′F (α′ )
p3+Qα′

(
1 − F (α)

p2+Qα

)(
1 − F (α)

p1+Qα

)− F (α)
p1+Qα

F (α)
p2+Qα

(
1 − F (α′ )

p3+Qα′

)(
1 − F (α′ )

p4+Qα′

)]
+ 1 − δαα′

2
Wdec.1(4α|3α′2α′1α )δ

(
E(α)

p1+Qα
+ E(α′ )

p2+Qα′ + E(α′ )
p3+Qα′ − E(α)

p4+Qα

)
× [F (α)

p4+Qα

(
1 − F (α)

p1+Qα

)(
1 − F (α′ )

p2+Qα′

)(
1 − F (α′ )

p3+Qα′

)− F (α)
p1+Qα

F (α′ )
p2+Qα′F (α′ )

p3+Qα′

(
1 − F (α)

p4+Qα

)]
+ 1

1 + δαα′
Wdec.2(4α′ |3α′2α1α )δ

(
E(α)

p1+Qα
+ E(α)

p2+Qα
+ E(α′ )

p3+Qα′ − E(α′ )
p4+Qα′

)
× [F (α′ )

p4+Qα′

(
1 − F (α)

p1+Qα

)(
1 − F (α)

p2+Qα

)(
1 − F (α′ )

p3+Qα′

)− F (α)
p1+Qα

F (α)
p2+Qα

F (α′ )
p3+Qα′

(
1 − F (α′ )

p4+Qα′

)]
+ 1

2 + 4δα,α′
Wcoal.(4α3α′2α′ |1α )δ

(
E(α)

p4+Qα
+ E(α′ )

p3+Qα′ + E(α′ )
p2+Qα′ − E(α)

p1+Qα

)

× [F (α)
p4+Qα

F (α′ )
p3+Qα′F (α′ )

p2+Qα′

(
1 − F (α)

p1+Qα

)− F (α)
p1+Qα

(
1 − F (α′ )

p2+Qα′

)(
1 − F (α′ )

p3+Qα′

)(
1 − F (α)

p4+Qα

)]}
, (E2)

Here Wq(i| f ) is the differential transition probability for the collision event i → f . In Eq. (E2) we use a slightly different
notation for the Bogoliubov excitation quantum state in comparison to that used in Appendix D. Namely, by writing iα , we
explicitly indicate that a given excitation is in the isospin state α, while i stands for the momentum state Qα + pi [the spin
quantum number is not included in iα since we only consider spin-averaged quantities in Eq. (E2)]. The differential transition
probabilities are already summed over the spin states of the Bogoliubov excitations 2α , 3α , 4α and averaged over the spin states
of the excitation 1α . The factors (1 + δαα′ )−1, (1 − δαα′ )/2, and (2 + 4δαα′ )−1 are added to prevent double or sixfold counting of
the same collision event. In the case of α′ �= α, the sets of the scattering and decay events split into two subsets, corresponding to
the transition probabilities Wscat.1, Wscat.2 and Wdec.1, Wdec.2, respectively. If α′ = α, both Wscat.1 and Wscat.2 as well as both Wdec.1

and Wdec.2 describe the same sets of scattering and decay events. In view of that, the multiplier (1 − δαα′ )/2 is added to Wscat.2

and Wdec.1. The delta functions in the expression (E2) ensure the conservation of energy. The differential transition probabilities
can be represented in the following form:

Wscat.1(4α3α′ |2α′1α ) = 1

2

∑
σ4,σ3,σ2,σ1

2π |〈Qα + p1, σ1, α; Qα′ + p2, σ2, α
′|V |Qα′ + p3, σ3, α

′; Qα + p4, σ4, α〉b|2δp1+p2,p3+p4 ,

(E3)
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Wscat.2(4α′3α′ |2α1α ) = 1

2

∑
σ4,σ3,σ2,σ1

2π |〈Qα + p1, σ1, α; Qα + p2, σ2, α|V |Qα′ + p3, σ3, α
′; Qα′ + p4, σ4, α

′〉b|2δp1+p2,p3+p4 ,

(E4)

Wdec.1(4α|3α′2α′1α ) = 1

2

∑
σ4,σ3,σ2,σ1

2π |〈Qα + p1, σ1, α; Qα′ + p2, σ2, α
′; Qα′ + p3, σ3, α

′|V |Qα + p4, σ4, α〉b|2δp1+p2,p4−p3 ,

(E5)

Wdec.2(4α′ |3α′2α1α ) = 1

2

∑
σ4,σ3,σ2,σ1

2π |〈Qα + p1, σ1, α; Qα + p2, σ2, α; Qα′ + p3, σ3, α
′|V |Qα′ + p4, σ4, α

′〉b|2δp1+p2,p4−p3 ,

(E6)

Wcoal.(4α3α′2α′ |1α ) = 1

2

∑
σ4,σ3,σ2,σ1

2π |〈Qα + p1, σ1, α|V |Qα′ + p2, σ2, α
′; Qα′ + p3, σ3, α

′; Qα + p4, σ4, α〉b|2δp1−p2,p3+p4 ,

(E7)

where 〈 f |V |i〉b are the matrix elements of the effective interaction Hamiltonian in the basis of Bogoliubov excitations
given in Appendix D, and the factor 1/2 arises due to averaging over the spin index σ1. The energy delta functions are
already taken into account in the expression (E2). The functions Wq(i| f ) are symmetric with respect to permutations of
quantum numbers of the Bogoliubov excitations in the initial state, as well as in the final states [e.g., Wscat.(4α3α|2α1α ) =
Wscat.(3α4α|2α1α ) = Wscat.(4α3α|1α2α ) and so on] since the matrix elements 〈 f |V |i〉b are antisymmetric with respect to such
transformations (see Appendix D). The function Wq(i| f ) is also symmetric with respect to interchange of initial and final states
[e.g., Wscat.(4α3α|2α1α ) = Wscat.(2α1α|4α3α )]. This symmetry follows from the Hermiticity of the matrix 〈 f |V |i〉b.

Considering integrals Iαα′ , let us analyze, for example, the expression in the first square brackets in (E2). It can be represented
as

F (α)
p1+Qα

F (α′ )
p2+Qα′F (α′ )

p3+Qα′F (α)
p4+Qα

⎛
⎝1 − F (α′ )

p2+Qα′

F (α′ )
p2+Qα′

1 − F (α)
p1+Qα

F (α)
p1+Qα

−
1 − F (α′ )

p3+Qα′

F (α′ )
p3+Qα′

1 − F (α)
p4+Qα

F (α)
p4+Qα

⎞
⎠. (E8)

Using Eqs. (77), (79), and (98), one can write

1 − F (α)
p+Qα

F (α)
p+Qα

≈ 1 − F (α)
p+Qα,0

F (α)
p+Qα,0

(
1 − φα

T

)
= exp

(
E(α)

p+Qα
− p u

T

)(
1 − φα

T

)
, (E9)

where we linearized this expression with respect to explicitly written function φα but keep it untouched inside the distribution

functions F (α)
p+Qα

.16 Plugging Eq. (E9) into (E8) and taking into account the energy delta function from the integral (E2) and the
Kronecker delta from the expression (E3), one obtains17

F (α)
p1+Qα,0F

(α′ )
p2+Qα′ ,0

(
1 − F (α′ )

p3+Qα′ ,0
)(

1 − F (α)
p4+Qα,0

)φ4α + φ3α′ − φ2α′ − φ1α

T
. (E10)

Now one can complete the linearization with respect to the Knudsen number K by replacing the distribution functions F (α)
p+Qα,0

with the equilibrium distributions F (α)
p+Qα,0. Repeating similar procedure for all the expressions in the square brackets in Eq. (E2),

one gets

Iαα′ = 1

T

∑
p2,p3,p4

{
1

1 + δα,α′
Wscat.1(4α3α′ |2α′1α )δ

(
E(α)

p4+Qα,0 + E(α′ )
p3+Qα′ ,0 − E(α′ )

p2+Qα′ ,0 − E(α)
p1+Qα,0

)

× δp1+p2,p3+p4F (α)
p1+Qα,0F (α′ )

p2+Qα′ ,0

(
1 − F (α′ )

p3+Qα′ ,0

)(
1 − F (α)

p4+Qα,0

)
[φ4α + φ3α′ − φ2α′ − φ1α]

+ 1 − δα,α′

2
Wscat.2(4α′3α′ |2α1α )δ

(
E(α′ )

p4+Qα′ ,0 + E(α′ )
p3+Qα′ ,0 − E(α)

p2+Qα,0 − E(α)
p1+Qα,0

)
× δp1+p2,p3+p4F (α)

p1+Qα,0F (α)
p2+Qα,0

(
1 − F (α′ )

p3+Qα′ ,0

)(
1 − F (α′ )

p4+Qα′ ,0

)
[φ4α′ + φ3α′ − φ2α − φ1α]

+ 1 − δα,α′

2
Wdec.1(4α|3α′2α′1α )δ

(
E(α)

p4+Qα,0 − E(α′ )
p3+Qα′ ,0 − E(α′ )

p2+Qα′ ,0 − E(α)
p1+Qα,0

)

16Recall that the distribution function F (α)
p+Qα

depends on the local Bogoliubov excitation energy E(α)
p+Qα

, which, in turn, depends on the

distribution functions F (α)
p+Qα

.
17It should be emphasized that the true energy E(α)

p+Qα
is conserved during the collision event, not the equilibrium energy E(α)

p+Qα,0.
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× δp1+p2,p4−p3F (α)
p1+Qα,0F (α′ )

p2+Qα′ ,0F (α′ )
p3+Qα′ ,0

(
1 − F (α)

p4+Qα,0

)
[φ4α − φ3α′ − φ2α′ − φ1α]

+ 1

1 + δα,α′
Wdec.2(4α′ |3α′2α1α )δ

(
E(α′ )

p4+Qα′ ,0 − E(α′ )
p3+Qα′ ,0 − E(α)

p2+Qα,0 − E(α)
p1+Qα,0

)
× δp1+p2,p4−p3F (α)

p1+Qα,0F (α)
p2+Qα,0F (α′ )

p3+Qα′ ,0

(
1 − F (α′ )

p4+Qα′ ,0

)
[φ4α′ − φ3α′ − φ2α − φ1α]

+ 1

2 + 4δα,α′
Wcoal.(4α3α′2α′ |1α )δ

(
E(α)

p4+Qα,0 + E(α′ )
p3+Qα′ ,0 + E(α′ )

p2+Qα′ ,0 − E(α)
p1+Qα,0

)

× δp1−p2,p3+p4

(
1 − F (α)

p1+Qα,0

)F (α′ )
p2+Qα′ ,0F (α′ )

p3+Qα′ ,0F (α)
p4+Qα,0[φ4α + φ3α′ + φ2α′ − φ1α]

}
. (E11)

Here we replaced E(α)
p+Qα

with E(α)
p+Qα,0 in the energy delta functions, which is justifiable in the linear approximation, and extracted

the momentum Kronecker deltas from the transition probabilities (E3)–(E7). One can see that, if φα = 0 (F (α)
p+Qα

= F (α)
p+Qα,0),

the collision integral vanishes. Thus, the distribution functions F (α)
p+Qα,0 can be considered as solutions to Eq. (78).

Our next aim will be to find the expression for the integral
∑

p1,σ1
p1Iαα′ . To that end, we multiply Eq. (E11) by p1, sum the

result over the quantum states 1α , and substitute the expression (99). The result is

∑
p1,σ1

p1Iαα′ = − 2

T

∑
p1,p2,p3,p4

{
1

1 + δα,α′
Wscat.1(4α3α′ |2α′1α )δ

(
E(α)

p4+Qα,0 + E(α′ )
p3+Qα′ ,0 − E(α′ )

p2+Qα′ ,0 − E(α)
p1+Qα,0

)

× δp1+p2,p3+p4F (α)
p1+Qα,0F (α′ )

p2+Qα′ ,0

(
1 − F (α′ )

p3+Qα′ ,0

)(
1 − F (α)

p4+Qα,0

)
p1[(p1 − p4)(Viα − Viα′ )]

+ 1 − δα,α′

2
Wscat.2(4α′3α′ |2α1α )δ

(
E(α′ )

p4+Qα′ ,0 + E(α′ )
p3+Qα′ ,0 − E(α)

p2+Qα,0 − E(α)
p1+Qα,0

)
× δp1+p2,p3+p4F (α)

p1+Qα,0F (α)
p2+Qα,0

(
1 − F (α′ )

p3+Qα′ ,0

)(
1 − F (α′ )

p4+Qα′ ,0

)
p1[(p1 + p2)(Viα − Viα′ )]

+ 1 − δαα′

2
Wdec.1(4α|3α′2α′1α )δ

(
E(α)

p4+Qα,0 − E(α′ )
p3+Qα′ ,0 − E(α′ )

p2+Qα′ ,0 − E(α)
p1+Qα,0

)
× δp1+p2,p4−p3F (α)

p1+Qα,0F (α′ )
p2+Qα′ ,0F (α′ )

p3+Qα′ ,0

(
1 − F (α)

p4+Qα,0

)
p1[(p1 − p4)(Viα − Viα′ )]

+ 1

1 + δα,α′
Wdec.2(4α′ |3α′2α1α )δ

(
E(α′ )

p4+Qα′ ,0 − E(α′ )
p3+Qα′ ,0 − E(α)

p2+Qα,0 − E(α)
p1+Qα,0

)
× δp1+p2,p4−p3F (α)

p1+Qα,0F (α)
p2+Qα,0F (α′ )

p3+Qα′ ,0

(
1 − F (α′ )

p4+Qα′ ,0

)
p1[(p1 + p2)(Viα − Viα′ )]

+ 1

2 + 4δα,α′
Wcoal.(4α3α′2α′ |1α )δ

(
E(α)

p4+Qα,0 + E(α′ )
p3+Qα′ ,0 + E(α′ )

p2+Qα′ ,0 − E(α)
p1+Qα,0

)

× δp1−p2,p3+p4

(
1 − F (α)

p1+Qα,0

)F (α′ )
p2+Qα′ ,0F (α′ )

p3+Qα′ ,0F (α)
p4+Qα,0p1[(p1 − p4)(Viα − Viα′ )]

}
, (E12)

where we make use of the momentum conservation in particle collisions. The factor 2 in Eq. (E12) arises from the summation
over the spin index σ1. Note that the sum (E12) vanishes identically if α′ = α (i.e., when, Viα′ = Viα). This is a consequence
of the fact that a given particle species cannot lose or gain momentum through interaction with itself. In what follows, we only
consider a nontrivial case when α′ = β �= α. Note that an arbitrary vector a can be added to the velocities Viα without affecting
the collision integrals. This is a direct consequence of the ambiguity related to the definition of the velocity u, see Sec. IV.

Before proceeding further let us notice that, in view of the properties of the matrix 〈 f |V |i〉b discussed at the end of
Appendix D, the transition probabilities Wcoal.(4α3β2β |1α ) and Wdec.1(1α|2β3β4α ) coincide, Wcoal.(4α3β2β |1α ) =
Wdec.1(1α|2β3β4α ). Accounting for this fact and using other symmetries of the transition probabilities Wq(i| f ) [see a passage
after Eq. (E7)] one gets, after some redefinitions of running variables,

∑
p1σ1

p1Iαβ = − 1

T

∑
p1,p2,p3,p4

{
Wscat.1(4α3β |2β1α )δ

(
E(α)

p4+Qα,0 + E(β )
p3+Qβ ,0 − E(β )

p2+Qβ ,0 − E(α)
p1+Qα,0

)
δp1+p2,p3+p4

× F (α)
p1+Qα,0F (β )

p2+Qβ ,0

(
1 − F (β )

p3+Qβ ,0

)(
1 − F (α)

p4+Qα,0

)
(p1 − p4)

[
(p1 − p4)(Viα − Viβ )

]
+ 1

2
Wscat.2(4β3β |2α1α )δ

(
E(β )

p4+Qβ ,0 + E(β )
p3+Qβ ,0 − E(α)

p2+Qα,0 − E(α)
p1+Qα,0

)
δp1+p2,p3+p4

× F (α)
p1+Qα,0F (α)

p2+Qα,0

(
1 − F (β )

p3+Qβ ,0

)(
1 − F (β )

p4+Qβ ,0

)
(p1 + p2)[(p1 + p2)(Viα − Viβ )]
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+ Wdec.1(4α|3β2β1α )δ
(
E(α)

p4+Qα,0 − E(β )
p3+Qβ ,0 − E(β )

p2+Qβ ,0 − E(α)
p1+Qα,0

)
δp1+p2,p4−p3

× F (α)
p1+Qα,0F (β )

p2+Qβ ,0F (β )
p3+Qβ ,0

(
1 − F (α)

p4+Qα,0

)
(p1 − p4)[(p1 − p4)(Viα − Viβ )]

+ Wdec.2(4β |3β2α1α )δ
(
E(β )

p4+Qβ ,0 − E(β )
p3+Qβ ,0 − E(α)

p2+Qα,0 − E(α)
p1+Qα,0

)
δp1+p2,p4−p3

× F (α)
p1+Qα,0F (α)

p2+Qα,0F (β )
p3+Qβ ,0

(
1 − F (β )

p4+Qβ ,0

)
(p1 + p2)[(p1 + p2)(Viα − Viβ )]

}
. (E13)

This formula can be further simplified provided that the hydrodynamic velocities are small. Since Eq. (E13) already contains a
small difference (Viα − Viβ ), one just needs to set u = Qα = Qβ = 0 in all other functions in this expression. The final result is∑

p1σ1

p1Iαβ = −Jαβ (Viα − Viβ ), (E14)

where

Jαβ = 1

3T

∑
p1,p2,p3,p4

[
Wscat.1(4α3β |2β1α )δ

(
E (α)

p4
+ E (β )

p3
− E (β )

p2
− E (α)

p1

)
δp1+p2,p3+p4 f

(α)
p1
f(β )
p2

(
1 − f(β )

p3

)(
1 − f(α)

p4

)
(p1 − p4)2

+ 1

2
Wscat.2(4β3β |2α1α )δ

(
E (β )

p4
+ E (β )

p3
− E (α)

p2
− E (α)

p1

)
δp1+p2,p3+p4 f

(α)
p1
f(α)
p2

(
1 − f(β )

p3

)
(1 − f(β )

p4
)(p1 + p2)2

+ Wdec.1(4α|3β2β1α )δ
(
E (α)

p4
− E (β )

p3
− E (β )

p2
− E (α)

p1

)
δp1+p2,p4−p3 f

(α)
p1
f(β )
p2

f(β )
p3

(
1 − f(α)

p4

)
(p1 − p4)2

+ Wdec.2(4β |3β2α1α )δ
(
E (β )

p4
− E (β )

p3
− E (α)

p2
− E (α)

p1

)
δp1+p2,p4−p3 f

(α)
p1
f(α)
p2
f(β )
p3

(
1 − f(β )

p4

)
(p1 + p2)2

]
(E15)

is the momentum transfer rate.
Since the total momentum of the mixture is conserved in collisions, the momentum transfer rate should be symmetric with

respect to interchanging of particle species indices: Jαβ = Jβα . It is easy to verify that Eq. (E15) satisfies this property. Indeed,
the scattering terms in Eq. (E15) are obviously symmetric, while the “dec.1” term turns into the “dec.2” term (and vice versa)
after the replacement α ↔ β. To see this, one should compare the expression (E5) with (E6) after interchanging the indices
(α ↔ β) and running variables (p1 ↔ p3).

The expression for the momentum transfer rate was obtained under assumption that both particle species are superfluid. If
one of them (say, the species α) is normal, the result should be modified in two ways. First, the corresponding distribution
function f(α)

p and energy E (α)
p of Bogoliubov excitations should be replaced with the (quasi)particle distribution function n(α)

p and
the energy ε(α)

p , respectively. Second, the collisions that do not conserve the number of (quasi)particles of species α should be
disregarded, i.e., one should set Wscat.2(4β3β |2α1α ) = Wdec.2(4β |3β2α1α ) = 0.
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