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Abstract

Model calculations of the electrostatic energy of body-centered-cubic and face-centered-

cubic Coulomb crystals are presented. The electrostatic energy is calculated using a pair

distribution function of ions in the harmonic approximation. This distribution function is

shown to be in a good agreement with the function derived by the Monte Carlo method in the

high-temperature classical limit (Tb_op; op being the ion plasma frequency). It is also in a

good agreement with the distribution function obtained by the path integral Monte Carlo

method in the low-temperature quantum limit (T5_op). First- and second-order anharmonic

corrections to the electrostatic energy are analyzed in a wide temperature range, from the high-

temperature classical regime to the low-temperature quantum regime. For typical conditions

in the envelopes of neutron stars and the cores of white dwarfs the anharmonic corrections to

the electrostatic energy do not exceed a few percent of the electrostatic energy of harmonic

lattice.
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1. Introduction

The model of a Coulomb crystal of point charges in a uniform neutralizing
background of charge of opposite sign is widely used in many branches of physics. In
particular, it is often employed in solid-state physics for describing electron-hole
plasma (e.g., Ref. [1]) and in plasma physics for describing dusty plasmas and ion
plasmas in Penning traps (e.g., Ref. [2]). Moreover, Coulomb crystals of ions with a
weakly polarized electron background are formed in the cores of white dwarfs and in
the envelopes of neutron stars. Properties of the Coulomb crystals can be analyzed
using either purely numerical techniques (simulations), such as classical or path
integral Monte Carlo methods, or analytical methods. The latter approach is based
on series expansions in powers of displacements of ions from their equilibrium sites,
which leads to the harmonic lattice (HL) approximation and phonon formalism
(e.g., Ref. [3]). The HL approximation allows one to obtain many useful and
sufficiently accurate results, the most obvious example being the energy of ion
vibrations in a very broad range of temperatures. Hence, one needs to know the
accuracy of the HL approximation.

The answer to this question can be given by calculating the anharmonic
corrections to the energy. The exact first-order anharmonic correction to the
electrostatic energy of Coulomb crystals with body-centered-cubic (bcc) and face-
centered-cubic (fcc) lattices in the classical regime was obtained by Dubin [4]. Later
on, Baiko et al. [5] employed an approximate analytical model to calculate the first-
and second-order anharmonic corrections to the electrostatic energy of classical
Coulomb crystals. The model treated the anharmonic effects in an approximate way.
Nonetheless, the agreement between the results of Refs. [4,5] for the first-order
anharmonic correction to the electrostatic energy of the classical bcc lattice was very
good. Also, the model of Ref. [5] is easily extendable into the quantum regime,
provided that ion-exchange effect is unimportant (which is the case of interest in this
study). Thus, with this model one can expect to obtain reasonably accurate estimates
of anharmonic corrections in the quantum regime, where exact numerical
calculations are not available.

It is the aim of the present paper to extend the results of Ref. [5] into the quantum
regime and to the case of fcc lattice.
2. Formalism

Let us outline the HL model. The electrostatic energy can be written as

U

N
¼

n

2

Z
Z2e2

r
½gðrÞ � 1�dr , (1)

where N is the total number of ions in the system, n is the ion number density, Ze is
the ion charge, and gðrÞ is the ion pair distribution function. In the HL model gðrÞ



ARTICLE IN PRESS

A.I. Chugunov, D.A. Baiko / Physica A 352 (2005) 397–408 399
can be written as (e.g., Refs. [6])

gðrÞ ¼
X

Ri

0

ffiffiffiffiffiffiffiffiffiffiffiffi
NðRiÞ

p
8p3=2n

e�NabðRiÞ xiaxib=4 , (2)

where the sum is over direct lattice vectors Ri (excluding the central vector R0 ¼ 0 as
indicated by the prime near the sum) and the vector xi is defined as xi ¼ Ri � r:
Furthermore, NðRiÞ ¼ det fNabðRiÞg; with NabðRiÞ ¼ V�1

ab ðRiÞ and V abðRiÞ ¼

r2
T dab=3 � vabðRiÞ: The quantity r2

T is the mean squared ion displacement in a lattice
site, that can be expressed as

r2
T ¼

3_

2M

1

on tanhð_on=2TÞ

� �
ph

(3)

and vabðRiÞ is the correlation matrix of displacements of two ions (e.g., Refs. [3,5]),

vabðRiÞ ¼
3_

2M

enaenb

on tanhð_on=2TÞ
cosðq 
 RiÞ

� �
ph

. (4)

In this case, n � ðq; sÞ labels phonon modes; q; en and on denote, respectively, the
phonon wave vector (in the first Brillouin zone), the polarization vector and the
frequency (to be calculated from the standard dynamic-matrix equations). The
brackets h
 
 
 iph denote averaging over the phonon spectrum, that can be performed
numerically using, for instance, the Holas method (e.g., Refs. [7,8]). Finally, M is the
ion mass.

The electrostatic energy of a lattice can be divided into three parts: the static
(Madelung) energy of the classical ions fixed in their lattice sites, the harmonic
energy, and the anharmonic energy. Eq. (1) with gðrÞ given by Eq. (2) accounts
exactly for the static-lattice and harmonic contributions (see below) but approxi-
mately describes the anharmonic energy component (as a sum of true Coulomb
energies of ions averaged over ion positions with the approximate HL ion pair
distribution function e.g. Ref. [5]).

Let us substitute Eq. (2) into (1) and add and subtract the elastic (Bragg) pair
correlation function under the integral

g1ðrÞ ¼
X

Ri

0 3
ffiffiffiffiffiffi
3p

p

8p2nr3
T

e�3x2
i =4r2

T

¼ 1 �
3
ffiffiffiffiffiffi
3p

p

8p2nr3
T

e�3r2=4r3
T þ

X
G i

0
e{r
G i�r2

T
G2

i =3 . ð5Þ

This function is obtained from gðrÞ by setting vabðRiÞ ¼ 0: In the last term the sum is
over inverse lattice vectors G i; excluding G0 ¼ 0: After introducing g1ðrÞ; Eq. (1) can
be written as

U

N
¼

n

2

Z
Z2e2

r
½g1ðrÞ � 1�dr þ

n

2

Z
Z2e2

r
½gðrÞ � g1ðrÞ�dr . (6)
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Now we can change the order of summation and integration. Integrating the first
term we get

U1

N
¼

n

2

Z
Z2e2

r
½g1ðrÞ � 1�dr ¼ 2pZ2e2n

X
i

0 1

G2
i

e�r2
T

G2
i =3 �

ffiffiffiffiffiffi
3

4p

r
Z2e2

rT

¼
Z2e2

a
zþ

r2
T

2a2
�
X

i

0 a

2Ri

erfc

ffiffiffi
3

p
Ri

2rT

� 	" #
, ð7Þ

where z is the electrostatic Madelung constant (z ¼ �0:895929 for bcc lattice and
¼ �0:895873 for fcc), erfcðxÞ is the complementary error function, and a ¼

ð4pn=3Þ�1=3 is the ion sphere radius. The last equality is obtained using the
expression for the Madelung constant derived by the Ewald method (e.g., Ref. [9])

z ¼
X

i

0 a

2Ri

erfc
ARi

a

� 	
þ
X

i

0 3

2G2
i a2

exp
G2

i a2

4A2

� 	
�

3

8A2
�

Affiffiffi
p

p , (8)

where A is an arbitrary number to be chosen to speed up the convergency of the sum.
In Eq. (7) we set A ¼

ffiffiffi
3

p
a=ð2rT Þ: Eq. (7) has simple meaning. The function g1ðrÞ

describes uncorrelated vibrations of ions near their lattice sites, with a symmetric
Gaussian probability distribution characterized by the rms displacement rT : Thus,
U1 is the energy of a point-like ion in a lattice site (zZ2e2=a) with two corrections.
The first correction, which contains r2

T ; is equal to the energy required to shift an ion
at a distance rT from the center of a sphere filled by a rigid electron background. The
second correction refers to electrostatic interaction of two ions at a mean distance Ri:
Specifically, it is the difference of the exact interaction energy for Gaussian ion
density distributions and the electrostatic energy of point-like ions; this difference is
exponentially small.

Let us take the second term in Eq. (6) and change the order of summation and
integration. The integration of g1ðrÞ gives Z2e2=ð2RiÞ ½1 � erfcð

ffiffiffi
3

p
Ri=2rT Þ�: The term

containing erfc exactly cancels similar term in U1: Then

U

NTG
¼ zþ

r2
T

2a2
þ
X

i

0

ffiffiffiffiffiffiffiffiffiffiffiffi
NðRiÞ

p
16p3=2

Z
a

r
e�NabðRiÞ xiaxib=4 dr �

a

2Ri

" #
, ð9Þ

where G ¼ Z2e2=aT is the Coulomb coupling parameter. To analyze this expression,
let us take any term under the sum over i and introduce a local coordinate frame with
z axis along Ri: The main contribution into the integral comes from a small vicinity
of r near Ri: Thus, 1=r can be expanded in series of xi: The leading expansion term,
1=Ri; after the integration, will be canceled with a=2Ri: Integrals containing odd
products of xi components vanish, while integrals containing even products of xi

components are taken by introducing a coordinate frame which diagonalizes Nab ¼

NabðRiÞ: After performing integration in that frame we can rotate the coordinate axis
and return to the initial frame. For instance, consider the integral which contains a
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product of four x � xi components. Let Tai be the rotation matrix. ThenZ
xmxnxlxxe

�Nabxaxb=4 dx ¼ TmiT nkTllTxm

Z
x0

ix
0
kx0

lx
0
me

�
P

j
N 0

jjx
02
j
=4

dx0

¼ 4TmiT nkTllTxmðV
0
ikV 0

lm þ V 0
ilV

0
km þ V 0

imV 0
klÞ

¼ 4ðVmnVlx þ VmlV nx þ VmxVlnÞ . ð10Þ

The primed quantities refer to a coordinate frame, where Nab is diagonal.
In this way after some algebra we finally obtain

U

NT
¼ zGþ AHL

0 þ
AHL

1

G
þ

AHL
2

G2
þ 
 
 
 , (11)

where AHL
0 is the harmonic coefficient given by

AHL
0 ¼ G

r2
T

2a2
þ
X

i

0 aG
2R3

i

ðvxx þ vyy � 2vzzÞ , (12)

while the first two anharmonic coefficients are

AHL
1 ¼

X
i

0 3aG2

R5
i

3

4
½ðvxxÞ

2
þ ðvyyÞ

2
� þ 2vzzðvzz � vxx � vyyÞ



þ ðvxyÞ
2
þ

1

2
vxxvyy � 4½ðvxzÞ

2
þ ðvyzÞ

2
�

�
, ð13Þ

AHL
2 ¼

X
i

0 30aG3

R7
i

5

8
ðvxxÞ

3
þ

5

8
ðvyyÞ

3
þ

3

2
ðvxyÞ

2
ðvxx þ vyyÞ



� 9½ðvxzÞ
2vxx þ ðvyzÞ

2vyy� þ
3

8
vxxvyyðvxx þ vyyÞ

� 3½ðvxzÞ
2vyy þ ðvyzÞ

2vxx þ ðvxyÞ
2vzz� � 12vxyvxzvyz

�
9

4
vzz½ðvxxÞ

2
þ ðvyyÞ

2
� þ 12vzz½ðvxzÞ

2
þ ðvyzÞ

2
�

�
3

2
vxxvyyvzz þ 3ðvzzÞ

2
ðvxx þ vyyÞ � 2ðvzzÞ

3

�
, ð14Þ

where vab ¼ vabðRiÞ: The index ‘‘HL’’ indicates that the coefficients are calculated
within the HL model. Eqs. (11)–(14) were obtained in Refs. [5,8] but the derivation
presented here is more straightforward.

The first term, AHL
0 ; contains the expression

vxx þ vyy � 2vzz ¼
3_

2M

1 � 3ðenzÞ
2

on
cosðq 
 RiÞ coth

_on

2T

� 	� �
ph

. (15)
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Taking into account Eqs. (12), (15) and (3), AHL
0 can be rewritten as

AHL
0 ¼

3

4T
_o2

p

1

on

1

3
þ

1

4pn

X
Ri

0 R2
i � 3ðRi 
 enÞ

2

R5
i

cosðq 
 RiÞ

 !
coth

_on

2T

� 	* +
ph

¼
3_o2

p

4T

DabðqÞenaenb
on

coth
_on

2T

� 	� �
ph

¼
3

4

_on

T
coth

_on

2T

� 	� �
ph

¼
Eph

2NT
, ð16Þ

where DabðqÞ is the dynamic matrix, Eph is the total energy of non-interacting
phonons (including the kinetic energy of ions). The quantity Eph is the sum of the
kinetic and potential energies of oscillating ions, which are equal due to the virial
theorem. It turns out that the HL model gives exact coefficient A0 in the expansion
(11). For that reason we will omit the index ‘‘HL’’ in A0: Eq. (16) is more practical
than Eq. (12), because it does not require calculating matrix vabðRiÞ:

Let us consider the asymptotic behavior of the matrix Gvab at a fixed Ri: In the
high-temperature classical limit (_op=T � y51) the asymptote of Gvab is defined by
the expansion of tanhð_on=2TÞ in powers of _on=2T : It contains only even powers of
y: However the first quantum correction Gv

q1
ab (that should be / y2) vanishes after the

integration over the Brillouin zone. For demonstrating this, let us calculate a
diagonal matrix element Gvq1

aa in an arbitrary coordinate system

Gvq1
aa / henaena cosðq 
 RiÞiph ¼

1

3

X3

s¼1

enaena

 !
cosðq 
 RiÞ

* +
ph

¼
1

3
hcosðq 
 RiÞiph ¼ 0 . ð17Þ

Accordingly, Gv
q1
ab � 0: In the low-temperature quantum limit (yb1) the asymptote

of Gvab contains the main term / y (determined by zero point vibrations) and small
thermal corrections. As seen from Eq. (4), the main contribution into the thermal
corrections comes from the central part of the Brillouin zone and can be extracted by
expanding cosðq 
 RiÞ in powers of ðq 
 RiÞ and using the dispersion equations of
acoustic modes. In this case the asymptote contains only odd powers of y: The first
thermal correction (/ y�1) is

Gvth1
ab ¼

3_

2M

enaenb

on

1

expð_on=TÞ � 1

� �
ph

¼
1

3
r2

T1dab ; ð18Þ

where r2
T1 is the first thermal correction to the r2

T : The last equality is valid for fcc and
bcc crystals. Thus, the first thermal correction corresponds to highly correlated
collective ion motion which does not change the pair distribution function Eq. (2)
and the electrostatic energy Eq. (1).

To calculate AHL
1 and AHL

2 we need to include only a few terms. On the other hand,
Eq. (12) for the harmonic term is impractical, and one is forced to use Eq. (16).
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3. Anharmonic corrections to the electrostatic energy of a Coulomb crystal

It this section we present the results of the HL calculations of the anharmonic
corrections to the electrostatic energy of a Coulomb crystal.

Our main approximation consists in replacing the exact pair correlation function
of ions, gðrÞ; by the function obtained in the HL approximation. To demonstrate the
accuracy of this approximation, in Fig. 1 we compare exact functions with HL ones
for a bcc crystal at G ¼ 200 and two values of the quantum parameter, y ¼ 0 and
24.5. In the classical crystal (y ¼ 0), the exact function gðrÞ was calculated by
Stringfellow et al. [10] using the classical Monte Carlo (MC) scheme. In the quantum
crystal (y ¼ 24:5) the exact function was calculated by Pollock and Militzer [11]
within the path integral Monte Carlo (PIMC) method. Both exact curves are
presented with kind permission of the authors. The agreement of the exact and HL
curves is seen to be quite satisfactory. This agreement is expected to become worse at
lower r (not shown in Fig. 1) where the HL approximation is inaccurate (e.g., Ref.
[6]). One the other hand, at large r the HL results are thought to be highly accurate.
In this limit the HL method becomes most efficient for calculating gðrÞ: The first
anharmonic correction to the Coulomb energy, calculated with the HL gðrÞ in the
classical limit, differs from the exact anharmonic correction only by 2% (Ref. [5] and
a discussion below). In the quantum limit (y ¼ 24:5) the relative difference between
exact and HL gðrÞ remains nearly the same as in the classical limit. This allows us to
expect that our model gives sufficiently accurate values of the first anharmonic
correction for any y:

Fig. 2 shows three expansion coefficients AHL
i (for i ¼ 0, 1, and 2, Eqs. (12)–(14))

as functions of y for fcc and bcc lattices. Notice the asymptotic values AHL
1 � 10:64

and 5:61 for bcc and fcc lattices, respectively, in the classical limit (y51), and the
behavior AHL

1 / y2 in the quantum limit (yb1).
1.0 1.5 2.0 2.5 3.0
0

1

2

3
Γ = 200

 MC θ = 0 

 PIMC θ = 24.5

 HL θ = 0

 HL θ = 24.5

g(
r)

r/a

Fig. 1. Pair correlation function of a Coulomb crystal for G ¼ 200 and two values y ¼ 0 and 24:5: Crosses

show the results of classical Monte Carlo [10] and path integral Monte Carlo [11] calculations. Lines are

HL calculations.
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104
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bcc fcc

 A0  A0

 A1  A1

 |A2|  |A2| A
i

θ

Fig. 2. First three expansion coefficients, A0; AHL
1 ; and AHL

2 ¼ �jAHL
2 j; for bcc and fcc lattices versus y:
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In the classical limit the exact values of the anharmonic correction found by Dubin
[4] are: A1 ¼ 10:85 for bcc and A1 ¼ 12:34 for fcc lattice. In the formalism of Ref. [4],
A1 can be written as a difference of two terms, which we call here as A11 and A12:
A1 ¼ A11 � A12: Dubin [4] found A12 ¼ 10:69 for bcc and A12 ¼ 5:63 for fcc lattice.
As shown in Ref. [5], AHL

1 ¼ þA12 and AHL
1 ¼ 10:64 for bcc. Our result is AHL

1 ¼

10:642 for bcc and AHL
1 ¼ 5:611 for fcc lattice in the classical limit. These numbers

differ from the results of Ref. [4] by 0.45% for bcc and by 0.34% for fcc lattice.
Notice also that in the case of bcc lattice AHL

1 differs from A1 only by 2%. Hence, the
HL model gives surprisingly accurate values of A0 and A1 for the bcc lattice in the
classical limit.

As for the coefficient AHL
2 (Fig. 2), it behaves as AHL

2 � �62:4 and �19:4 in the
classical bcc and fcc lattices, respectively, and as AHL

2 / y3 in the quantum lattice.
Our approximation, which neglects the anharmonicity of the pair distribution
function, is too crude for an accurate determination of A2: As a result, our numerical
value of AHL

2 in the classical limit for the bcc lattice disagrees (even has the wrong
sign) with the value A2 � 247; deduced from MC data (Table V of Ref. [12]). Our
aim here is to point out the quantum asymptote AHL

2 / y3 and, possibly, the analytic
expression (14), rather than numerical values of AHL

2 :
In contrast to the coefficients AHL

1 and AHL
2 ; the main coefficient A0 is almost

independent of the lattice type (bcc or fcc); A0 has been calculated previously (Ref.
[13]) and is shown here for completeness.

The asymptotic behavior of AHL
i in the classical limit is determined by the

asymptotes of the matrix GvabðRiÞ: As shown earlier, only even powers of y (y0; y4;
y6; . . . ; excluding y2) appear in the series expansion of this matrix in the classical
limit. Accordingly, the expansions of AHL

1 and AHL
2 behave as c1 þ c2 y

4
þ c3 y

6
þ . . .

In contrast, A0 contains mean-squared ion displacement r2
T ; and the associated y2

expansion term, A0 ¼ c1 þ c2 y
2
þ c3 y

4
þ . . . :

The asymptotic behavior of AHL
i in the quantum limit is more complicated. The

main contribution into AHL
i comes from zero point vibrations. As discussed above,
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Table 1

Fit parameters for Eq. (19)

bcc fcc

A0 AHL
1 AHL

2
A0 AHL

1 AHL
2

C1 1.5 10.6424 �62.4052 1.5 5.611 �19.389

C2 9.303 2.2705 2.2783 9.41506 2.5196 2.5375

C3 25.242 1.3948 1.4224 26.1463 1.9998 2.0555

C4 15.196 0.31981 0.322917 16.9613 0.58583 0.6091

C5 3.58 0.01 0.01338 4.731 0.00589 0.00094

C6 3.7482 2.2705 2.2783 3.86055 2.5196 2.5375

C7 2.3244 0.5318 0.53081 2.57606 0.75471 0.758

d 3 � 10�5 8 � 10�5 7 � 10�5 7 � 10�6 4 � 10�5 1:3 � 10�4

A.I. Chugunov, D.A. Baiko / Physica A 352 (2005) 397–408 405
the first-order thermal correction to the matrix GvabðRiÞ does not change the
electrostatic energy. The higher order expansion terms cannot be obtained directly
from the expansion of the matrix GvabðRiÞ in powers of y; because this expansion
does not converge uniformly with respect to Ri: However, the same situation takes
place also for the harmonic coefficient A0; whose exact quantum asymptote coincides
with the asymptote obtained using a formal expansion of GvabðRiÞ in powers of y:
Based on this and for the sake of fitting the numerical results we assume that the
asymptotes of other coefficients AHL

i can be written as AHL
i ¼ c1 y

iþ1
þ c2 y

i�3
þ

c3 y
i�5

þ . . . Accordingly, we can propose the fit expression

AHL
i ¼ C1

1 þ C2t2 þ C3t4 þ C4t6 þ C5t8

1 þ C6t2 þ C7t4 þ C8t6

� 	ðiþ1Þ=2

for i ¼ 0; 1; 2 , (19)

where t ¼ 0:1 y; and C8 ¼ C5C7=C4 (to reach agreement with quantum series
expansions). To satisfy the asymptotes in the classical regime we can also impose the
condition C6 ¼ C2 for A1 and A2: Because A0 ¼ 1:5 in the classical limit, we can set
C1 ¼ 1:5: We have fitted our numerical results for bcc and fcc lattices with y ranging
from 0.1 to 300. The fit parameters C1–C7 and the maximum fit error d are
summarized in Table 1. An rms relative error over a representative grid of data
points, including the points from the classical and quantum domains, is typically
twice lower than the maximum error for all AHL

i and both crystal types. The fits are
seen to be highly accurate.

The temperature dependence of the thermal part of anharmonic corrections to the
electrostatic energy and the thermal energy of the harmonic lattice is the same
(U th / T4) in the quantum limit.
4. Anharmonicity of crystals in white dwarf cores and neutron star envelopes

For illustration, let us analyze anharmonicity of Coulomb crystals in the cores of
white dwarfs and the envelopes of neutron stars.
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Let us define the energy of zero-point ion vibrations per one ion

E0 ¼ lim
T!0

EðTÞ � EM , (20)

where EM ¼ zZ2e2=a is the Madelung energy and EðTÞ is the crystal energy (per ion)
at a temperature T. Let us introduce also the thermal energy of the crystal EthðTÞ �

EðTÞ � E0 � EM: In each energy, E0 and Eth; we select a harmonic component (that
corresponds to the purely harmonic Hamiltonian): EHL

0 ¼ 3u1_op=2
(u1 � hon=opiph � 0:5113875 and 0:5131940; for bcc and fcc crystals, respectively)
and EHL

th : These harmonic components have been studied in Ref. [13]. Exact
anharmonic corrections to these components will be denoted by dE0 � E0 � EHL

0

and dEth � Eth � EHL
th : Approximate anharmonic corrections, calculated in the

frame of our approximation by taking into account the first anharmonic correction
AHL

1 ; will be denoted as dE
ð1Þ
0 and dE

ð1Þ
th :

For example, consider the 12C matter of the density r ¼ 106 g cm�3; characteristic
of cores of white dwarfs and envelopes of neutron stars. In this case the melting
temperature is Tm � 2:044 � 106 K; and the plasma temperature Tp � _op �

3:916 � 106 K: The Madelung energy (per ion in temperature units) appears to be
EM � �3:205 � 108 K; the harmonic energy of zero-point ion vibrations is EHL

0 �

3 � 106 K; and its anharmonic correction is dE
ð1Þ
0 � 1:5 � 104 K: These values are

almost the same for bcc and fcc lattices. The zero-point vibration energy is a small
correction to the Madelung energy. The anharmonic correction dE

ð1Þ
0 can be

neglected in comparison with the Madelung energy.
Fig. 3 shows the thermal energy per ion EHL

th and its first anharmonic correction
dE

ð1Þ
th as a function of temperature for a 12C bcc crystal at r ¼ 106 g cm�3: We also

display the electron thermal energy Eth
e ðTÞ ¼ EeðTÞ � Eeð0Þ: The upper horizontal
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Fig. 3. Thermal energy (per ion) EHL
th and its first anharmonic correction dE

ð1Þ
th as a function of

temperature for crystalline (bcc) 12C matter of the density r ¼ 106 g cm�3: We also show the electron

thermal energy Eth
e (per ion). The upper horizontal scale gives the values of y: The vertical dotted line

shows the melting temperature Tm:



ARTICLE IN PRESS

A.I. Chugunov, D.A. Baiko / Physica A 352 (2005) 397–408 407
scale gives the values of y: The vertical dotted line indicates the melting temperature
Tm: The curves in the crystalline phase are extended continuously beyond Tm just for
illustration. At low temperatures T5Tp the energy dE

ð1Þ
th constitutes 4% of the total

harmonic thermal energy. With growing temperature the ratio dE
ð1Þ
th =EHL

th decreases to
the minimum value � 2:4% at T � 7 � 105 K: With further growth of T the
anharmonicity of the crystal increases because of the increase of the amplitude of ion
vibrations. At low temperatures (T5Tp) only a small fraction of phonons with low
frequencies contributes to the thermal energy of the matter. As a result, at Tt3 � 104 K
the main contribution into the thermal energy comes from degenerate electrons.

Let us notice that the ratio dE
ð1Þ
th =EHL

th behaves as / r1=6 at T5Tp and as / r�1=3

at TbTp:
Notice also that in the classical limit near the melting point the total anharmonic

correction, known from the Monte Carlo simulations (e.g., Ref. [14]), exceeds dE
ð1Þ
th

by about 80%.
We expect that the numerical values presented above are valid at least for order-

of-magnitude estimates. They indicate that Coulomb crystals in white dwarf cores
and neutron star envelopes are sufficiently harmonic. More accurate consideration
of anharmonic corrections is required for incorporating these corrections into
computer codes which simulate, for instance, thermal evolution of white dwarfs.
However, our calculations give accurate values of approximate quantities which, in
fact, represent certain terms of exact anharmonic contribution, useful for deriving
exact results in the future.
5. Conclusions

We have used the harmonic-lattice approximation to calculate the first- and
second-order anharmonic corrections to the electrostatic energy of a Coulomb
crystal with bcc and fcc lattices. Our calculations cover the high-temperature
classical regime, the low-temperature quantum regime, and the intermediate regime.
In the classical regime, the first-order anharmonic term for bcc lattice is shown to be
in a good agreement with the previous results (e.g., Refs. [4,5]). In our model the
thermal part of the anharmonic corrections to the electrostatic energy in
the quantum limit have the same temperature dependence as thermal energy of
the harmonic lattice (Eth / T4). The harmonic energy and the first- and second-
order anharmonic coefficients are fitted by simple analytical expressions with the
maximum error of t10�4: For the typical conditions in envelopes of neutron stars
and cores of white dwarfs the anharmonic corrections do not exceed a few percent of
the harmonic energy.
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