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Abstract—We calculate the electron shear viscosity of dense matter (determined by Coulomb electron
collisions) in a wide range of parameters typical for white dwarf cores and neutron star crusts. In the
density range from ∼103 g/cm3 to 107–1010 g/cm3 we consider the matter composed of widely abundant
astrophysical elements, from H to Fe. For higher densities, 1010–1014 g/cm3, we employ the ground-state
nuclear composition, taking into account finite sizes of atomic nuclei and the distribution of proton charge
over the nucleus. Numerical values of the viscosity are approximated by an analytic expression convenient
for applications. Using the approximation of plane-parallel layer, we study frequencies, eigenmodes, and
viscous damping times of oscillations of high multipolarity, l ∼ 500–1000, localized in the outer crust of
a neutron star. For instance, at l ∼ 500 oscillations have frequencies f � 40 kHz and are localized not
deeper than about 300 m from the surface. When the crust temperature decreases from 109 K to 107 K,
the dissipation time of these oscillations (with a few radial nodes) decreases from ∼1 year to 10–15 days.
c© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The shear viscosity of dense stellar material (with
densities ρ � 1014 g/cm3) is important for a number
of astrophysical problems, including the computa-
tions of the viscous damping of oscillations of white
dwarves and the envelopes of neutron stars. The total
shear viscosity can be presented as a sum of various
matter components. In the case of the outer crust
of a neutron star or the core of a white dwarf, it is
determined by electrons and ions: η = ηe + ηi; it is
necessary to add a contribution due to free neutrons,
ηn, in the inner crust of a neutron star. The electrons
are strongly degenerate and form an ideal Fermi gas,
while the ions are fully or partially ionized and form
strongly nonideal Coulomb fluid or Coulomb crystal.
Under these conditions, the electrons become the
most important carriers of heat, charge (see, for ex-
ample, [1]), and momentum, and the main process de-
termining kinetic coefficients (thermal conductivity,
electrical conductivity, and viscosity) is the scattering
of electrons by ions (atomic nuclei).

The shear viscosity of the dense stellar material
determined by electron–ion scattering has been con-
sidered in a number of papers. For example, the elec-
tron viscosity of a strongly nonideal Coulomb fluid
was calculated in [2–4] from variational principle. The
results of these computations are in good agreement.
However, they were carried out without including
the quasi-order of ions, which is important near the
melting point. Inclusion of this quasi-order in a fluid
together with multiple-phonon process of electron
scattering in a crystal led to the disappearance of
1063-7729/05/4909-0724$26.00
appreciable (by a factor of two to four) jumps in the
electrical and thermal conductivities [1].

Previous computations of the viscosity were car-
ried out in the Born approximation. However, the
non-Born corrections are important when calculat-
ing the electrical and thermal conductivities of mat-
ter containing chemical elements with high charge
numbers Z (see, for example, [1]). We include these
corrections and show that they are equally important
for calculations of the viscosity.

When studying oscillations of the envelopes of
neutron stars, it is necessary to know the viscosity
of matter with the density of ρ � 1014 g/cm3. When
ρ ∼ 1013 g/cm3, the dimensions of atomic nuclei be-
come comparable to the distances between them, and
it is necessary to take into account the distribution
of proton charge within the nuclei. This effect was
included in the electrical- and thermal-conductivity
computations of [5, 6] by introducing the form factor
for the atomic nuclei. No such computations have
been carried out for the viscosity.

In the current study, we have performed computa-
tions of the shear viscosity taking into account non-
Born corrections and the form factor of the nuclei,
the quasi-order in a Coulomb fluid, and multiphonon
process in a Coulomb crystal. The results are approx-
imated by analytical formulas that are convenient for
astrophysical applications.

Various types of oscillation modes can be excited
in neutron stars. Generally speaking, these oscilla-
tions carry important information about the internal
c© 2005 Pleiades Publishing, Inc.
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structure of neutron stars. Specific types of oscilla-
tions (such as r modes) can be accompanied by the
radiation of gravitational waves. Interest in studies
of neutron-star oscillations has been continuously
growing. Since neutron stars are relativistic objects,
theoretical studies of their oscillations must be carried
out in the framework of general relativity. The rela-
tivistic theory of oscillations was developed in a series
of papers by Thorne and coauthors [7–12]. In partic-
ular, the rapid (∼1 s) damping of p-mode oscillations
with multipolarity l = 2 due to gravitational-wave
radiation was demonstrated in [9]. Exact inclusion
of general-relativistic effects is labor-intensive, but,
in many cases, it is possible to use the relativistic
Cowling approximation [13]. A similar analysis of
various oscillation modes and mechanisms for their
dissipation is carried out in [14]. We also note the
recent review of Stergioulas [15], which contains an
extensive bibliography. As a rule, oscillations with low
values of l have been considered in the literature.

Although neutron stars are in the final stage of
stellar evolution, they can be seismically active for
many reasons. Possible mechanisms for the gener-
ation of oscillations have been widely discussed in
the astrophysical literature (see, for example, [14, 15]
and references therein). Much attention has recently
been paid to r modes—vortex oscillations that can be
generated in rapidly rotating neutron stars and are
accompanied by powerful gravitational radiation. In
addition, oscillations can be excited in neutron stars,
for example, during X-ray bursts (nuclear explosions
on the surfaces of accreting neutron stars), the burst-
ing activity of magnetars (anomalous X-ray pulsars
and soft gamma-ray repeaters; see, for example, [16]),
and glitches (sudden changes of spin periods) of
ordinary pulsars.

In this paper, we study the damping of oscillations
in the context of illustrating the results of viscos-
ity computations. We therefore choose the simplest
example—p-mode oscillations that are localized in
the outer crust due to a high value of the orbital
number l � 500.

2. SHEAR VISCOSITY OF DENSE STELLAR
MATERIAL

2.1. Parameters of Equilibrium Dense Material

The state of strongly degenerate electrons can
conveniently be described using their Fermi momen-
tum pF or wave number kF:

pF ≡ �kF = �
(
3π2ne

)1/3 = mecxr,

where � is Planck’s constant, me and ne are
the mass and number density of electrons, xr ≈
1.009 (ρ6Z/A)1/3 is the relativistic parameter of the
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electrons, Ze and A are the charge and atomic
number of the ions (nuclei), and ρ6 is the density
in units of 106 g/cm3. The electron degenerating
temperature is

TF =
(
εF −mec

2
)
/kB

≈ 5.93 × 109
(√

1 + x2
r − 1

)
K,

where kB is Boltzmann’s constant and

εF ≡ m∗
ec

2 = mec
2
√
1 + x2

r

is the Fermi energy of electrons. In our study, we
consider matter with T � TF and T � 5× 109 К (the
latter is required in order to avoid dissociation of the
atomic nuclei).

Further, we will use the Fermi velocity of the elec-
trons:

vF ≡ cβr = pF/m
∗
e .

The electrostatic screening of a test charge by the de-
generate electrons is described by the Thomas-Fermi
wave number kTF (the inverse screening radius):

k2
TF = 4πe

2 ∂ne

∂µ
≈ α

πβr
(2kF)

2 ,

where µ ≈ εF is the chemical potential of electrons
and α = e2/�c ≈ 1/137.036 is the fine-structure
constant.

The state of the system of ions is described by the
classical Coulomb coupling parameter

Γ =
Z2e2

akBT
≈ 22.75Z2

T6

(ρ6

A

)1/3
,

where a = (3/4πni)
1/3 is the radius of the ion sphere;

ni = ne/Z, the number density of ions; and T6, the
temperature in units of 106 K. When Γ� 1, the ions
form a nearly ideal Boltzmann gas. If Γ � 1, they
form a strongly nonideal Coulomb fluid. Finally, when
Γ > Γm (corresponding to temperatures T < Tm), the
ions crystallize. The crystallization of a classical sys-
tem of ions corresponds to Γm ≈ 175 (see, for exam-
ple, [17]).

Quantum effects in the system of ions become
important whenΘ ≡ T/Tp � 1, where

Tp = �ωp/kB ≈ 7.832 × 106(Z/A)ρ1/2
6 K

is the ion plasma temperature, ωp =(
4πZ2e2ni/mi

)1/2 is the ion plasma frequency, mi =
Amu is the mass of an ion, and mu = 1.6605 ×
10−24 g is the atomic mass unit.
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2.2. General Formalism

In the case of isotropic matter, the viscous-stress
tensor has the simple form

σ′
αβ = η

(
∂Uα

∂xβ
+

∂Uβ

∂xα
− 2
3
δαβ∇ · U

)
(1)

+ ζδαβ∇ ·U,

where U is the hydrodynamical velocity of the matter,
η is the shear viscosity, and ζ is the bulk viscosity (this
last quantity is especially important for the uniform
compression and rarefaction of matter).

Generally speaking, crystalline matter is aniso-
tropic, and expression (1) for the viscous-stress ten-
sor may not be formally applicable. However, in dense
matter, ions crystallize with the formation of a high-
symmetry face or body centered cubic lattice. In this
case, the viscous-stress tensor for a monocrystal is
determined by three independent coefficients (see, for
example, [18]), and can be written in the form (1)
with an additional term of the form κδαβ∂Uα/∂xα (the
sum over α is not carried out). The quantity U should
be understood as the velocity field for shifts of the
ions in their lattice sites. When studying any trans-
port processes on scales exceeding the characteristic
monocrystal size, the matter can be considered to be
isotropic. As in all the literature concerned with the
kinetics of the crystalline matter of white dwarves and
neutron stars without magnetic fields, we will restrict
our analysis to this case (assuming κ = 0).

The shear viscosity of the envelopes of neutron
stars and the cores of white dwarves is primarily de-
termined by the strongly degenerate electrons. It is
convenient to present this viscosity in the form

ηe =
nepFvF

5νe
,

where νe = 1/τe is the effective electron collision fre-
quency, which is related to the effective electrons
relaxation time τe. If the electron scattering is deter-
mined by several independent processes, these can be
studied separately, and the total collision frequency
will be the sum of the partial ones. For the dense
matter of white dwarf cores and envelopes of neutron
stars,

νe = νei + νimp + νee,

where νei, νimp, and νee correspond to electron scat-
tering by ions, impurity atoms, and electrons, re-
spectively. The dominant process is electron–ion
scattering, to which the current paper is dedicated.
Electron–ion scattering also determines the thermal
and electrical conductivities of dense matter (see, for
example, [1]). With small variations, the formalism
proposed by Potekhin et al. [1] is also applicable for
computations of the viscosity.
In crystalline matter, the electron–ion interaction
can adequately be described in terms of the emission
and absorption of phonons [19]. This description can
be realized using an ion dynamical structure factor [2].

The frequency of electron–ion collisions (ei scat-
terings) can be written as

νei = 12π
Z2e2Λeini

p2
FvF

=
4ZεF
π�

α2Λei, (2)

where Λei is the effective Coulomb logarithm, which
can be calculated using the variational method (see,
for example, [19]). When using the simplest trial func-
tion in the Born approximation for a strongly nonideal
ion plasma (Γ � 1), one obtains

Λei =

2kF∫
q0

q3u2(q)
(
1− q2

4k2
F

)
(3)

×
[
1− 1

4

(
�q

m∗
ec

)2
]
Sη(q)dq,

where q0 is the minimum momentum transfered in
an ei scattering event; q0 = 0 for the liquid phase
and q0 = qB in the crystalline phase, where qB =
(6πni)

1/3 is the radius of a sphere of the same volume
as the Brillouin zone. The value q0 = qB was intended
to select umklapp processes (i.e., those involving
variations in the electron momentum ��qB) in an
ei scattering event. At temperatures that are not
too low, the contribution of such processes to the
Coulomb logarithm Λei,

T � Tu ∼ TpZ
1/3α/3βr,

is much higher than the contribution of normal pro-
cesses occurring when q < qB (see, for example, [20]).
However, at low temperatures (T � Tu), umklapp
processes are “frozen” and the viscosity is determined
by normal processes. We will neglect this effect below,
restricting our consideration to temperatures T � Tu.

The function u(q) in (3) describes the Coulomb
interaction between an electron and an atomic nu-
cleus, as discussed in Section 2.3. The factor in
square brackets describes the kinematic effect of the
backward scattering of the relativistic electrons (see,
for example, [21]); Sη(q) is an effective static structure
factor that takes into account ion correlations. This
factor coincides with the effective structure factor
determining the electrical resistivity of the dense mat-
ter, which was computed and approximated in [22].
Note that the structure factor of a strongly nonideal
Coulomb fluid is known only in the classical limit
(Θ
 1). We also define a simplified structure factor,
based on the following approximations:

• Neglecting quasi-ordering in ion positions in the
Coulomb fluid (see, for example, [1]).
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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• Single-phonon approximation for the inelastic
structure factor of the Coulomb crystal (see, for ex-
ample, [20]).

We will call the viscosity calculated using the sim-
plified structure factor the simplified viscosity. Note
that previous computations of the shear viscosity by
Flower and Itoh [2, 3] and Nandkumar and Pethick [4]
were carried out for a Coulomb fluid using the simpli-
fied structure factor.

To take into account corrections to the Born ap-
proximation, we also multiply the integrand by the ra-
tio of the exact and Born cross sections for Coulomb
scattering. This method was proposed in [23] and
was used to calculate the transport coefficients by
Potekhin et al. [1, 24].

The effective frequency of electron scattering by
impurities (assuming that the impurity atoms ran-
domly occupy some of the sites of the crystal lattice) is
similar to the frequency of scattering by ions [see (2)]:

νimp =
12πe4

p2
FvF

∑
imp

(
Z − Zimp

)2
nimpΛimp,

where Zimp is the charge number of the impurity
ion and the Coulomb logarithm Λimp is calculated
using (3), but assuming the impurity atoms are only
weakly correlated (corresponding to the structure
factor Simp ≡ 1, while the screening of the impurities
is taken into account in the factor u(q)). In the sim-
plest model with Debye screening (with a screening
radius of q−1

Simp),

Λimp =
1
2
(
1 + 3β2

r ξ
2 + 2ξ + 2ξβ2

r

)
× ln

(
1 + ξ

ξ

)
− 3
2
β2

r ξ −
1
4
β2

r − 1,

where ξ = qSimp/(2kF) and q2
Simp = k2

TF + k2
imp. Here,

kimp is the wave number for the Debye screening of
the test charge by impurities (the inverse correlation
length of the impurities). This weakly influences the
result (kTF 
 kimp), and can be estimated as kimp =
(4πnimp/3)1/3, where nimp is the number density of
the impurities. Scattering on impurities is important
at low temperatures, when scattering on the crystal
lattice is suppressed by quantum effects.

The expression for the frequency of electron-
electron collisions νee was obtained by Flowers and
Itoh [2]. Their result can be written in the form

νee =
5π2α2k2

BT
2

2m∗
ec

2�

(
kF

kTF

)(
1 +

6
5x2

r
+

2
5x4

r

)
(4)

≈ 4.473 × 1011
(

kF

kTF

)(
n0

ne

)1/3

T 2
8 s−1,
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where the latter expression is presented for an ultra-
relativistic electron gas (xr 
 1), n0 ≈ 0.16 fermi−3

is the number density of nucleons in the atomic nu-
clei, and T8 is the temperature in units of 108 К.

2.3. The Form Factor of the Atomic Nuclei

The function u(q) describing the Coulomb inter-
action between an electron and an ion in (3) has
the form

u(q) =
F (q)

q2|ε(q)| ,

where ε(q) is the static longitudinal dielectric function
of the degenerate electron gas [25], which describes
the electronic screening of the ion field. Here,

F (q) ≡ 1
Z

∫
enp(r) exp(ır · q)dV (5)

=
4πe
Z

rp∫
0

np(r) sin(qr)
q

rdr

is the nuclear form factor characterizing the distri-
bution of proton charge within the atomic nucleus.
The integration in (5) is carried out over the atomic
nucleus, np(r) is the local number density of protons,
and rp is the radius of the proton core. In white
dwarves and the outer envelopes of neutrons stars
(ρ � 1011 g/cm3), the atomic nuclei can be taken to
be pointlike, F (q) ≡ 1. At densities ρ � 1013 g/cm3,
the proton charge can with good accuracy be taken to
be uniformly distributed throughout the nucleus. In
this case, it is a good approximation to write the form
factor as

F (q) =
3

(qrp)3
[
sin(qrp)− qrp cos(qrp)

]
, (6)

where rp is the radius of the proton core in the
atomic nucleus. When ρ � 1013 g/cm3, the proton-
density profile differs strongly from a step function,
and the form factor (6) becomes unacceptable. In this
case, we determined the nuclear form factor using
the model of the ground-state matter with smoothed
dependences of the parameters on the density of the
matter [26].

2.4. Analytical Approximation for the Viscosity

We have obtained an analytical approximation for
the Coulomb logarithm of ei scattering using the
method of the effective electron–ion scattering po-
tential proposed in [1] for the electrical and ther-
mal conductivities. The properties of matter with the
density of ρ � 1010 g/cm3 were studied in [1], where
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the form factor of the atomic nuclei was taken to be
unity. Later, Gnedin et al. [27] extended this method
to higher densities. As we noted above, the effective
structure factors for the viscosity and electrical con-
ductivity coincide. This simplifies generalization of
the effective-potential method for the approximation
of the shear viscosity. Following [27], we write in place
of u2(q)Sη(q) in (3)[

u2(q)Sη(q)
]
eff =

1(
q2 + q2

S

)2 (7)

×
[
1− e−s0q2

]
e−s1q2

GηD.

The factor
(
q2 + q2

S

)−2 corresponds to Debye screen-
ing of the Coulomb interaction with the effective
screening radius q−1

S ; the term in square brackets de-
scribes the ion correlations. The functions Gη and D

describe ion quantum effects. The factor exp
(
−s1q

2
)

added in [27] takes into account the influence of the
atomic-nucleus form factor. The numerical values
of the shear viscosity obtained based on the exact
theory are reproduced for the same parameters as the
electrical and thermal conductivities in [27]:

s ≡
(

qS

2kF

)2

= (si + se)e−βZ ;

βZ = παZβr; si = sD(1 + 0.06Γ)e−
√

Γ;

sD = (2kFrD)−2;

w ≡ (2kF)2s0 =
u−2

sD

(
1 +

βZ

3

)
;

w1 ≡ (2kF)2s1 = 14.73x2
nuc

×
(
1 +

Z

13
√
xnuc

)(
1 +

βZ

3

)
;

Gη =
(
1 + 0.122β2

Z

)(
1 + 0.0361

Z−1/3

Θ2

)−1/2

;

D = exp
[
−0.42u−1

√
xr

AZ
exp(−9.1Θ)

]
,

where se ≡ k2
TF/(2kF)2 = α/πβr is the electron-

screening parameter, rD = a/
√
3Γ is the ionic Debye

radius, xnuc is the ratio of the mean-square radius of
the distribution of the protons in the atomic nucleus
and the radius of the ion sphere, and u−1 ≈ 2.8 and
u−2 ≈ 13 are the parameters of the phonon spectrum
in the Coulomb crystal. Note that the function Gη

coincides with the function Gσ from [27].
After integrating in (3) with the effective poten-

tial (7), we obtain
Λ = [Λ0(s,w + w1)− Λ0(s,w1)]GηD,
where the functions

Λ0(s,w) = Λ1(s,w)

−
(
1 + β2

r

)
Λ2(s,w) + β2

r Λ3(s,w),

with

2Λ1(s,w) = ln
s+ 1
s

+
s

s+ 1
(
1− e−w

)
− (1 + sw)esw [E1(sw)− E1(sw + w)] ,

2Λ2(s,w) =
e−w − 1 + w

w

− s2

s+ 1
(
1− e−w

)
− 2s ln s+ 1

s

+ s(2 + sw)esw [E1(sw)− E1(sw +w)] ,

2Λ3(s,w) = 3s2 ln
1 + s

s
+
1
2
2s3 − 4s2 − 3s + 1

1 + s

− s3

(1 + s)
e−w +

e−w

w
+
(2sw − 1) (1− e−w)

w2

− s2(3 + sw)esw (E1(sw)− E1(sw + w)) .

Here, E1(x) ≡
∫∞
x y−1e−ydy is the exponential in-

tegral (see, for example, [28]). The maximum error
in the approximation for the viscosity does not ex-
ceed 20%.

2.5. Main Properties of the Shear Viscosity

Let us discuss the results of our computations
of the shear viscosity without taking into account
the freezing out of umklapp processes (Section 2.2).
Figure 1 presents the temperature dependence of the
shear viscosity for a carbon plasma with density ρ =
104 g/cm3. The upper horizontal scale plots the non-
ideality parameter Γ of the plasma. Since the charge
number is fairly low, Z = 6, the non-Born corrections
are modest, and are not visible on the scale of Fig. 1.
All the data presented in the figure except for the
dot-dashed curves correspond to the scattering of
electrons by ions of single type.

The bold points in the figure show the numerical
results. The solid curve is the analytical approxima-
tion for the viscosity. The dashed curve shows the
viscosity computed using the simplified structure fac-
tor (Section 2.2). The large jumps in this “simpli-
fied” viscosity at the melting point are clearly visible.
These jumps (by a factor of two to four) are present
for all chemical elements and all plasma parameters.
Modification of the structure factor (Section 2.2) in-
creases the accuracy of the computations in the liq-
uid and solid phases, and makes the viscosity jumps
insignificant for all elements. This makes it possible
to introduce a single approximation for both phases
(Section 2.4).
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 1. Temperature dependence of the shear viscosity for
a carbon plasma with density ρ = 104 g/cm3. The solid
curve shows the analytical approximation of the viscos-
ity. The bold points present the results of the numeri-
cal calculations. The dashed curve shows the “simpli-
fied” viscosity, which demonstrates a jump at the melting
point. The dot-dashed curves correspond to matter with
16O impurities with concentration of 2 and 4%.

However, appreciable viscosity jumps are present
at the melting point in our computations for high
densities, where zero point oscillations of ions become
important. We assume, as did Potekhin et al. [1]
for the electrical and thermal conductivity, that these
jumps are a consequence of using the classical struc-
ture factor in the ion fluid under conditions when
quantum effects are important (while quantum effects
are included in the solid phase). Since the numerical
data used to construct the analytical approximation
include both the liquid and solid phases, the general
analytical approximation shifts the viscosity in the
liquid phase to the viscosity in the solid phase. We
suppose that, for an ionic fluid at high densities, this
approximation is more exact than our original nu-
merical data. It will be possible to verify this in the
future, when the ionic structure factors in a fluid are
calculated taking into account quantum effects.

The dot-dashed curves in Fig. 1 demonstrate the
influence of scattering by charged impurities. We
considered oxygen impurities with concentrations
of 2 and 4%. The presence of these impurities weakly
manifested at high temperatures, but dominates at
low temperatures, T � Tp, when scattering of elec-
trons by phonons in the Coulomb crystal is strongly
suppressed by quantum effects.

Figure 2 presents the temperature dependence of
the shear viscosity for an iron plasma with density
ρ = 108 g/cm3. The upper horizontal scale plots the
plasma nonideality parameter Γ. The bold points
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 2. Temperature dependence of the shear viscosity for
an iron plasma with density ρ = 108 g/cm3. The solid
curve shows the analytical approximation of the viscosity.
The bold points present the results of the numerical com-
putations. The hollow circles correspond to the Born ap-
proximation. The dashed curve presents the “simplified”
viscosity computed in the Born approximation.

present our numerical results, while the solid curve
shows the approximation. The dashed curve depicts
the computations using the simplified structure factor
neglecting non-Born corrections. As in Fig. 1, the
simplified viscosity displays jumps at the melting
point, while the new results pass smoothly through
this point. The charge number of iron (Z = 26) is high
enough for the non-Born corrections to be apprecia-
ble. To demonstrate this effect, the hollow circles in
Fig. 2 show the results of numerical computations of
the viscosity in the Born approximation. We can see
that the non-Born corrections reduce the viscosity by
approximately 20%.

Figure 3 depicts the density dependence of the
shear viscosity for hydrogen, helium, carbon, and
iron plasmas at a temperature of T = 107 К. Let us
consider the densities typical for the cores of white
dwarves and the outer envelopes of neutron stars.
The bold points show the numerical results, and the
curves are the approximations. The strong depen-
dence of the plasma viscosity on the chemical com-
position is due to the dependence of the frequency of
electron–ion collisions on the charge number Z. In
contrast to the thermal conductivity (see, for exam-
ple, [1]), the influence of electron-electron collisions
on the viscosity is insignificant at the considered den-
sities, even for hydrogen.

Figure 4 demonstrates the density dependence of
the shear viscosity of the plasma in the range from
106 to 1015 g/cm3 for the three temperatures T =
107, 108, 109 К. The ground state nuclear composi-
tion with smoothed parameters was used. The points
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107 К as a function of the density for various chemical
compositions (H, He, С, and Fe). The bold points show
the numerical results and the curves show the analytic fit.

show the numerical results, and the curves are the
approximations. In contrast to the thermal conduc-
tivity [1], the shear viscosity decreases strongly with
growing temperature. Note that the ratio ρ/η grows
with increasing density in the outer crust of a neutron
star. These results are important when computing the
damping of oscillations in the crust of a neutron star
(see Section 3.3).

For illustrative purposes, the plot is continued
beyond the crust into the stellar core (densities ρ ≥
1.5 × 1014 g/cm3). In the core, we used the equation
of state of the matter presented in [29]. It is assumed
that the core material consists of neutrons, protons,
and electrons and is not superfluid. The electronic
viscosity in the core of such a star is primarily deter-
mined by the scattering of electrons by the degener-
ate protons. The corresponding collision frequency is
obtained analogously to the rate of electron-electron
collisions [see (4)], and is equal to

νep = π2α2

(
kF

q0

) (kBT )
2 m∗

p
2

�p3
F

c

≈ 1.434 × 1012
(
kF

q0

)
T 2

8

(
m∗

p

mp

)2
n0

ne
s−1,

where mp ≈ 1.672 × 10−24 g is the proton mass and
m∗

p is its effective mass, which differs from mp due to
multiple-frequency effects (it is assumed that m∗

p =
0.7mp). The Debye-screening parameter in the stellar
core is equal to

q2
0 = 4π

∑
j

e2
j

∂nj

∂µj
,
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Fig. 4. Shear viscosity of the ground state matter as
a function of the density ρ for the three temperatures
T = 107, 108, 109 К. The solid curves show the analytical
approximation of the viscosity. The bold points represent
the results of our numerical computations. The vertical
dotted lines indicate the neutron drip density and the
boundaries of the crust and core of a neutron star (ρ =
1.5 × 1014 g/cm3 in our computations). The electronic
viscosity in the stellar core determined by the scattering
of electrons by degenerate protons is presented for com-
parison.

where the sum is taken over all types of charged
particles (electrons and protons); ej , nj , and µj are
the charge, number density, and chemical potential
of particles of sort j. Due to the strong suppression
of scattering by the proton degeneracy, the electronic
viscosity in the core grows by approximately a factor
of 1000 compared to its value in the crust.

3. P MODES OF OSCILLATIONS
OF A NEUTRON STAR CRUST

This section is dedicated to a study of the p modes
of the oscillations (i.e., oscillations in which perturba-
tions of the pressure dominate over the buoyant force)
with high orbital numbers (multipolarity), l � 500,
localized in the outer crust of a nonrotating neu-
tron star.

3.1. General Formalism

3.1.1. Flat Metric for the Envelope
of a Nonrotating Neutron Star

The standard spacetime metric for a nonrotating
neutron star [30] can be written as

ds2 = c2e2Φdt̃2 − e2λdr2 − r2dΩ2, (8)

where dΩ2 = dθ2 + sin2 θdϕ2, t̃ is the time coordi-
nate, r is the radial coordinate, θ and ϕ are the
polar and azimuthal angles, and the functions λ(r)
and Φ(r) determine the curvature of spacetime. In the
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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case of interest to us of the thin envelope, we can
neglect variation of the functions λ(r) and Φ(r) on
the scale of the crust and use the value at the stellar
surface:

e2Φ(R) = e−2λ(R) = 1− 2GM

c2R
,

where M is the gravitational mass of the neutron star.
Neglecting variations in r in the envelope compared
to the stellar radius R (in the approximation of a thin
envelope layer), we can rewrite (8) in the form

ds2 = c2
(
1− RG

R

)
dt̃2

−
(
1− RG

R

)−1

dr2 −R2dΩ2,

where RG = 2GM/c2 ≈ 2.953(M/M�) km is the
gravitational radius. Introduction of the local time t
and local depth z, specified by the relations

t = t̃
√
1−RG/R, z = (R − r)/

√
1−RG/R,

(9)

we come to a flat coordinate system that is the same
for the entire neutron-star crust:

ds2 = c2dt2 − dz2 −R2dΩ2. (10)

This metric coincides with the metric of a thin spher-
ical layer in a flat spacetime.

3.1.2. Equilibrium Structure
of the Neutron Star Crust

The structure of the neutron star is determined
by the equation of hydrostatic equilibrium,
including the effects of general relativity
(the Tolman-Oppenheimer-Volkov equation; see, for
example, [30]). This equation is greatly simplified
in the envelope, and can be rewritten in the planar
coordinate system (9):

c2s
dρ0

dz
=

dP0

dz
= gρ0, (11)

where P0 and ρ0 are the equilibrium pressure and
density, c2s ≡ ∂P0/∂ρ0 is the square of the local sound
speed, and

g =
GM

R2
√
1−RG/R

≈ 1.327 × 1014 M

M�

(
10 km

R

)2/√
1−RG/R

cm
s2

is the gravitational acceleration.
The computations used the equation of state for a

fully degenerate electron gas with electrostatic cor-
rection to the pressure. The chemical composition
ASTRONOMY REPORTS Vol. 49 No. 9 2005
of the matter was determined using a model with a
smoothed equilibrium nuclear composition. We also
used a polytropic model for the envelope, in which the
pressure is determined by the degenerate electrons,
which are taken to be relativistic at all densities, and
the matter is assumed to consist of 56Fe nuclei.

3.1.3. Oscillation Equation

In the outer envelopes of neutrons stars, the main
contribution to the pressure is produced by the de-
generate electrons. Therefore, when considering the
p modes of the oscillations, we can use a single equa-
tion of state to describe the equilibrium configuration
of the star and perturbations.

Let us write the Euler equation in a planar met-
ric (10):

∂U
∂t

+ (U · ∇)U = −∇P

ρ
+ g,

where P is the pressure of the matter. The continuity
equation must also be satisfied:

∂ρ

∂t
+∇ (ρU) = 0.

Taking the velocity U to be small and introducing
Euler perturbations of the pressure δP = P − P0 and
density δρ = ρ− ρ0, we obtain the linearized Euler
equation

∂U
∂t

=
δρ

ρ2
0

∇P0 −
1
ρ0

∇δP

and the continuity equation

∂δρ

∂t
+∇ (ρ0U) = 0, (12)

while the equation of state for the perturbations can
be rewritten in the form

δP = c2sδρ. (13)

We will consider irrotational motion and write the
velocity in the form U = ∇φ, where φ is the veloc-
ity potential, which is a scalar function of coordi-
nates and time. Formally, the function φ is determined
with accuracy to within an arbitrary function of time,
which we choose so that the Euler equation can be
rewritten [using (11) and (13)]

∂φ

∂t
= −δP

ρ0
= −c2s

δρ

ρ0
. (14)

Differentiating (14) with respect to the local time t
and taking into account (12) and (11) yields

∂2φ

∂t2
= c2s∆φ+ g · ∇φ, (15)
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where we have introduced the Laplace operator

∆ ≈ ∂2

∂z2
+

1
R2

(
∂2

∂θ2
+

1
sin2 θ

∂2

∂ϕ2

)
.

An equation that coincides with (15) was obtained by
Lamb [31] for atmospheric oscillations. The variables
in (15) can be separated if we write

φ = eıωtYlm(Ω)F (r),

where ω is the oscillation frequency, Ylm(Ω) are
spherical harmonic functions (see, for example, [32]),
and F (z) is an unknown function of depth that is
determined by the equation

d2F

dz2
+

g

c2s

dF

dz
+
(
ω2

c2s
− l(l + 1)

R2

)
F = 0. (16)

The first boundary condition for this equation,

function F (z) is bounded as z → 0, (17)

follows from the requirement that the amplitude of the
oscillations at the stellar surface be finite. The sec-
ond boundary condition is imposed artificially. In the
current study, we solved equations that were appli-
cable only in the thin crust of the star. Therefore, the
oscillations should become damped with depth. For
simplicity, we formally move this boundary condition
to infinity along z and will monitor the true region of
localization of the oscillations (see Section 3.3). In
this case, the boundary condition can be written

F (z)→ 0 as z → ∞. (18)

Together with the boundary conditions (17) and (18),
Eq. (16) specifies the eigenfrequencies and modes of
the oscillations. Moreover, the following asymptotics
are valid at large and small depths:

F (z) ∝

 1− ω2z/g z → 0,

exp
(
−
√

l(l + 1)z/R
)

z → ∞.
(19)

Perturbations of the pressure and density are ex-
pressed in terms of the function φ(r) using rela-
tion (14):

δP = −ıωρ0φ, δρ =
δP

c2s
= −ı

ωρ0

c2s
φ.

Due to the boundary condition (17), variations of the
pressure and density, δP and δρ, are zero at the stellar
surface (since ρ0(R) = 0). We can see from these last
expressions that the number of zeros of the velocity
potential with depth (k) coincides with the number
of nodes of the pressure and density variations. Fur-
ther, we will call k the number of radial nodes of
the mode.
The displacement vector for a matter element in
the case of oscillations can be written in the form

ξ ≡
∫

Udt = − ı

ω
∇ · φ.

The z component of this vector is

ξz = − ı

ω
Ylm(θ, ϕ)

dF

dz
,

and the magnitude of the horizontal displacement can
be estimated as

|ξh| ≈
l

ωR
|F (z)| .

The quantities lF (z)/R and dF/dz appear on equal
footing in (16). Therefore, horizontal and radial dis-
placements should have the same order of magnitude
for the oscillations considered.

Oscillations of a polytropic envelope in a plane-
parallel approximation were studied earlier by
Goch [33] assuming that the equation of state of
the unperturbed matter and the perturbations are
described by polytropes with different indices. In the
limiting case of equal polytropic indices n, his result
can be presented as follows: the mode containing
k radial nodes has the eigenfrequency

ω2
k =

g

R

√
l(l + 1)

(
2k
n
+ 1
)

(20)

≈ 108g14

(
10 km

R

)√
l(l + 1)

(
2k
n
+ 1
)

s−2,

while the velocity potential is specified by the function

Fk(z) = exp
(
−
√

l(l + 1)
z

R

)
× L

(n−1)
k

(
2
√

l(l + 1)
z

R

)
,

whereL
(n−1)
k (x) is a generalized Laguerre polynomial

(see, for example, [28]) and g14 is the gravitational ac-
celeration at the stellar surface in units of 1014 cm/s2.
Note that the eigenfrequencies agree with the simple
estimate ω2 ∼ g/a, where a ∼ R/l is the characteris-
tic scale for the localization of the oscillations.

Note that the mode with k = 0 does not have
any radial nodes. It corresponds to the vanishing
Langragian variation of the pressure and density
[∇ ·U = 0, see (26)]; its parameters do not depend
on the adiabatic index. Adding the condition ∇ · U ≡
∆φ = 0 to (15), it is easy to show that this mode,
which is described by the function F (z) =

exp
(
−
√

l(l + 1)z/R
)

and has the frequency

ω2
0 =

g

R

√
l(l + 1) (21)

≈ 108g14

(
10 km

R

)√
l(l + 1) s−2,
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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exists for any equation of state. Therefore, the fre-
quency ω0 will further be used to make the eigenfre-
quencies of the oscillations dimensionless.

The frequencies ω computed here refer to the coor-
dinate system of the stellar envelope [see (9)] and can
easily be transformed to the frequencies ω̃ as detected
by a distant observer:

ω̃ = ω
√
1−RG/R.

3.2. Viscous Damping of the Oscillations

In this section, we consider the damping of
oscillations with velocity potentials of the form
eıωtYlm(Ω)F (r) in a spherically symmetrical star
under the action of shear viscosity. We take the space-
time metric to be flat. This treatment is applicable to
the oscillations studied in Section 3.1, since the flat
metric (10), which coincides with the metric for a thin
spherical layer in a flat spacetime, can be introduced
in the region, where oscillations are localized. As
a result, it is sufficient to consider the oscillation
damping time in a flat metric and transform this time
[in accordance with (9)] into the frame of a distant
observer.

We define the oscillation damping time τ as

τ = E/|dE/dt|, (22)

where

E =
∫

εdV =
∫

ρ
|U |2
2

dV (23)

is the total energy of the oscillations and

ε =
1
4

(
ρ0|U |2 + c2s

ρ0
|δρ|2

)
is the energy density of the oscillations at a given
point averaged over the period (see, for example, [34]).
The additional factor of 1/2 in the expression for ε
is required due to the averaging over the oscillation
period. The integration is carried out over the en-
tire volume of the star (in practice, over the region
where the oscillations are localized). We neglect the
perturbation of the gravitational potential. The last
equality in (23) is determined by the equality of the
mean kinetic and potential energies in the case of
small harmonic oscillations. Note that a number of
authors have considered the damping time for the
oscillation amplitude rather than the damping time for
the oscillation energy (22).

When calculating the energy using (23), the an-
gular integration can be carried out analytically:

E =
1
2

R∫
0

ρ

[(
F ′)2 + l(l + 1)

r2
F 2

]
r2dr.
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The period-averaged rate of viscous dissipation of the
energy is (see, for example, [34])

dE

dt
= −1

4

∫
σ′

ik

(
∂U∗

i

∂xk
+

∂U∗
k

∂xi

)
dV, (24)

where the viscous-stress tensor σ′
αβ is given by (1).

As in the computation of the oscillation energy E, the
additional factor of 1/2 is required owing to the aver-
aging over the oscillation period. It is easy to see that
the rate of dissipation of energy separates into a sum
of terms associated with shear and bulk viscosities.
We will only consider the dissipation determined by
the shear viscosity. The integration over the angular
variables in (24) can be carried out analytically (see
the Appendix).

3.3. Discussion of the Numerical Results

As an example, we choose a “canonical” model
for a neutron star with a mass of M = 1.4M� and a
radius of R = 10 km. For this model,

ω0 ≈ 1.56 × 105
(
l(l + 1)
104

)1/4

s−1,

and for a distant observer

ω̃0 ≈ 0.766ω0 ≈ 1.19× 105
(
l(l + 1)
104

)1/4

s−1.

The thickness of the outer crust of such a star
(ρ < 4× 1011 g/cm3 before the neutron drip point)
is ≈410 m.

The eigenfrequencies of the oscillations were
found via a series of iterative trials, testing for the
coincidence of the mode number with the number of
radial nodes.

3.3.1. Eigenfrequencies of the Oscillations

The dependence of the eigenfrequencies of the os-
cillations specified by (16) with the boundary con-
ditions (17) and (18) on l is presented in Figs. 5
and 6. As we indicated above, the frequency of the
fundamental mode, which does not have any radial
nodes, is determined by (21) for all l.

With decreasing l, the oscillations penetrate
deeper regions of the outer crust, where the equation
of state is softened due to the relativistic nature of the
electron gas and beta captures. This gives rise to a
gradual decrease in the dimensionless eigenfrequen-
cies of the oscillations. As in the model with the poly-
tropic equation of state [see (20)], the distance be-
tween the squares of the dimensionless eigenfrequen-
cies for a fixed l is nearly constant. Theweak approach
of the frequencies with growth in the number of radial
nodes is due to the penetration of the oscillations to
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Fig. 5. Eigenfrequencies of oscillations localized in the
crust of a “canonical” neutron star. The numerical values
are normalized to the frequency ω0 given by (21). The
numbers next to the curves indicate the number of radial
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Fig. 6. Frequencies of oscillations localized in the crust
of a “canonical” neutron star as detected by a distant
observer. The subscript of f denotes the number of radial
nodes.
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Fig. 7. Root-mean-square (in the angular variables) am-
plitude of the radial displacements of matter for modes
with l = 500. The subscript of ξ indicates the number
of radial nodes. The root-mean-square amplitude of the
radial displacements at the stellar surface has been set
equal to 1 m.
deeper layers of the star, where the equation of state is
softened. When l ∼ 500, the main oscillation energy
is localized in the region 50 m � z � 400 m, where
the equation of state of the degenerate, relativistic
electron gas is described well by the profile of the
sound speed. Therefore, the estimate (20) for the
eigenfrequencies obtained in the polytropic model for
the envelope with polytropic index n = 3 is valid (with
accuracy to within several percent).

3.3.2. Modes of the Oscillations

Figure 7 presents profiles of the radial displace-
ments of the matter for modes with l = 500. The
mean squared amplitude of the radial displacements
of the stellar surface was taken to be 1 m. Since we
are considering linear oscillations, this quantity is an
arbitrary (sufficiently small) constant that normalizes
the solution. It is easy to determine from Fig. 7 the
magnitude of the radial displacements in the star for
any other amplitude of the radial displacements at the
surface. With growth of the depth z, there is a de-
crease in the amplitude of the radial displacements ξz ,
associated with oscillations. At z � 300 m, the de-
crease becomes monotonic and gradually emerges
onto the exponential asymptotic (19). This makes it
reasonable to speak of the localization of the oscilla-
tions in the outer crust of the star.

This effect is manifested even more clearly in the
energy density of the oscillations. Figure 8 presents
the dependence of the total energy density ε aver-
aged over the angular variables as a function of the
depth z for oscillations with l = 500. The amplitude
of the mode is normalized in the same way as in
Fig. 7. In our approximation, the energy density of the
oscillations is proportional to the square of the nor-
malized amplitude of the radial displacements of the
surface. The depicted modes are localized in the outer
crust of the neutron star. The energy density of the
oscillations varies comparatively weakly within the
“critical” depth z � 100–200m, after which it falls off
exponentially. The energy density decreases by more
than two orders of magnitude toward the boundary
between the outer and inner crust of the star.

As was noted in Section 3.3.1, when l ∼ 500, the
oscillation frequencies are reproduced well by a poly-
tropic model for the crust. The situation is somewhat
different for the eigenmodes. Normalization at the
stellar surface is not expedient for these modes, since
this model poorly reproduces the structure of the star
at low depths z � 40 m. Consequently, such normal-
ization leads to large errors at the depths of interest
to us, z � 100–200 m, where the main oscillation
energy is concentrated. Therefore, we need some kind
of special normalization to compare modes. Figure 9
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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(like Fig. 8) depicts the angle-averaged energy den-
sity of the oscillations ε as a function of z. The sym-
bols show the results of the numerical computations,
while the curves show profiles in the polytropic model,
normalized so as to being the results into agreement
in the region, where oscillations are localized. We
can see that the polytropic model for the outer crust
satisfactorily reproduces the energy density of the
oscillations at depths of 60 m � z � 500m for modes
with l ∼ 500.

3.3.3. Damping of the Oscillations

In the further computations, the neutron-star
crust was taken to be isothermal. This approximation
describes well the intrinsic temperature profile: the
temperature is nearly independent of depth due to
the high thermal conductivity of the degenerate
electron gas. In our computations, the frequency and
damping time of the oscillations did not depend on the
normalization amplitude (the amplitude of the radial
displacements of the surface).

Figures 10, 11, and 12 present the dependence of
the damping time τ of the oscillations (for a distant
observer) on l for canonical neutron star with crust
temperatures of T = 107, 108, and 109 K.

The strong temperature dependence of the oscilla-
tion damping time is due to the appreciable decrease
in the viscosity with increasing temperature (Fig. 4).

The oscillation damping time can be estimated
based on the characteristic parameters of the oscil-
lations:

τ ∼ ε/ε̇ ∼ ρU2

/
η

(
U

λ

)2

∼ λ2 ρ

η
,

where ε̇ is the local viscous-dissipation rate and
U and λ are the characteristic velocity and scale for
variations of this quantity in the region of localization
of the oscillations.

Let us consider Fig. 11 in more detail. Oscillations
with l ∼ 500 are localized at z � 100 m (Fig. 8),
which corresponds to densities ρ � 1010 g/cm3.
Under these conditions, the ratio ρ/η is ∼3 s/cm2

(Fig. 4) and grows with increasing l (due to the
decrease of the density in the region of localization
of the oscillations). We present further estimates for
modes with l ∼ 500. The scale for variations in the
velocity can be estimated as λ ∼ R/l. Note that this
scale decreases for high modes (with a large number
of radial nodes), accelerating the damping of the
oscillations. For the fundamental mode (without any
radial nodes), the damping time (transformed to the
frame of a distant observer) can be estimated as

τ ∼ 1.2 × 104(500/l)2 s ≈ 120(500/l)2 day,
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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Fig. 8. Angle-averaged total energy density of the os-
cillations ε for modes with l = 500. The subscript of ε
indicates the number of radial nodes. The mean squared
amplitude of the radial displacements at the stellar surface
has been set equal to 1 m.
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T = 109 K.
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in good agreement with the numerical results for
l ∼ 500. The damping time drop weaker than ∝ l−2

is due to the growth in the ratio ρ/η for higher l, due to
the decrease of the density in the region of localization
of the oscillations.

For the outer crust of a star with a temperature
of T = 109 K, the ratio ρ/η does not depend very
strongly on the density ρ. Therefore, the oscillation
damping time well obeys the law τ ∝ l−2.

The dependence of the damping time on the crust
temperature is presented in Fig. 13, where we have
chosen modes with l = 500 as an example. The
damping time grows by approximately two orders
of magnitude as the temperature varies from 107 to
108 K. When the temperature increases by another
order of magnitude, the damping time grows further
by a factor of three. This is due to the nonlinear drop in
the viscosity with growth in the temperature (Fig. 4).

There exist many other damping mechanisms in
addition to the viscous damping of oscillations of
a neutron star considered here [14]. For example,
damping due to the radiation of gravitational and
electromagnetic waves (due to oscillations of the stel-
lar matter with a frozen-in magnetic field) are often
studied. In our case, these mechanisms are inefficient
due to the high multipolarity considered, l � 500.
When l is high, we expect gravitational or electro-
magnetic radiation to be generated by an ensemble of
closely spaced coherent elementary radiating regions,
which radiate in antiphase and cancel each other out.
Formally, the weakness of this radiation is mani-
fested by the presence of large factors (2l + 1)!! in
the denominators of the expressions for the radiation
intensities (see, for example, [35, 36]). Analysis shows
that the damping of the oscillations we consider here
is determined to a substantial extent by the shear
viscosity.

A detailed analysis of the evolution of the pulse
shapes of some radio pulsars provides evidence that
high-multipole oscillations are, indeed, excited in
them (see, for example, the recent study [37]). How-
ever, reliable observational data on the existence of
such oscillations have not yet been obtained.

4. CONCLUSIONS

We have carried out computations of the shear
viscosity of the dense stellar matter for a broad
range of parameters that are typical for the cores of
white dwarves and the envelopes of neutron stars.
We considered matter consisting of important as-
trophysical elements from H to Fe at densities from
102–104 g/cm3 to 107–1010 g/cm3. At higher densi-
ties, 1010–1014 g/cm3, we considered matter with an
equilibrium nuclear composition taking into account
ASTRONOMY REPORTS Vol. 49 No. 9 2005
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the finite size of the atomic nuclei and the distribution
of proton charge within the nuclei. Under the condi-
tions described above, the viscosity is determined by
the Coulomb scattering of the degenerate electrons
by atomic nuclei. We used the modified ion structure
factor proposed by Baiko et al. [22] and applied by
Potekhin et al. [1] to compute the thermal and electri-
cal conductivities. In an ionic fluid, this modification
approximately takes into account the quasi-ordering
in ions positions, which reduces the scattering of
electrons by the ions. In the crystalline phase, the
new structure factor takes into account multiphonon
processes, which are important near the melting
temperature Tm. The new results near the melting
point differ appreciably from those of Flowers and
Itoh [2, 3] obtained for a Coulomb fluid. The numerical
results were approximated by an analytical expression
that is convenient for astrophysical applications.

We investigated the frequencies and modes of os-
cillations localized in the outer crust of a neutron star
in a plane–parallel approximation. A polytropic model
for the crust can reproduce the eigenfrequencies of the
oscillation modes with multipolarity l ∼ 500 reason-
ably well. The viscous-damping time for the oscilla-
tions was also computed. There is a sharp decrease
in the damping time with increasing temperature of
the neutron-star crust. For example, for a neutron
star with mass M = 1.4M�, radius R = 10 km, and
a crust temperature of T = 108 К, the damping time
for the fundamental mode with l = 500 is ∼160 day.
When the temperature decreases to T ∼ 107 К, the
damping time falls to ∼15 day.

In our computations, we used a model of the
ground state matter for the neutron star crust with a
smoothed dependence of the parameters of the atomic
nuclei on the density of the matter. More accurate
computations would require the use of an exact model
for the equilibrium nuclear composition, in which
this composition was varied with depth in the crust
in a jumpwise fashion (there arises a series of weak
phase transitions of the first kind at specific depths).
The presence of these jumps could strengthen the
damping of the oscillations. We plan on considering
this problem in a future study.
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APPENDIX

INTEGRATION OF THE LOCAL RATE
OF VISCOUS DISSIPATION OF ENERGY

OVER THE ANGULAR VARIABLES

When calculating the angular integral in (24), it is
convenient to introduce the notation

σ̃ik ≡ ∂Ui

∂xk
+

∂Uk

∂xi
.

Then, the part of (24) that is associated with the shear
viscosity can be written as

dE

dt
= −1

4

R∫
0

ηr2dr

∫ [
σ̃ikσ̃

∗
ki −

4
3
|∇U|2

]
dΩ

(25)

= −1
4

R∫
0

r2η

(
I1 −

4
3
I2

)
dr,

where dΩ is an element of solid angle,

I1 ≡
∫

σ̃ikσ̃
∗
kidΩ and I2 ≡

∫
|∇U|2 dΩ.

Here, we have assumed that the unperturbed star is
spherically symmetrical, so that the shear viscosity η
does not depend on the angular variables. The inte-
grals I1 and I2 were computed analytically for veloci-
ties of the form U = ∇φ, where the velocity potential
is φ = eıωtYlm(θ, ϕ)F (r).

The integral I1 can be computed if we write the
components of the tensor σ̃ik in spherical coordinates
(see, for example, [34]). After this, the integration over
the angles can be carried out analytically (using the
properties of the function Ylm(θ, ϕ); see, for exam-
ple, [32]). This yields

I1 = 4

{(
F ′′)2 + 21 + l(l + 1)

r2

(
F ′)2

− 6 l(l + 1)
r3

F ′F + l(l + 1)
1 + l(l + 1)

r4
F 2

}

≈ 4

{(
F ′′)2 + 2 l(l + 1)

R2

(
F ′)2

+ l(l + 1)
l(l + 1)

R4
F 2

}
,
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where the last equality is valid in the plane-parallel
layer approximation.

Let us now consider the integral I2. For this, we
write the divergence of the velocity:

∇U = ∆φ =

(
1
r2

∂

∂r
r2∂F

∂r
Ylm(θ, ϕ) (26)

+ F∆ΩYlm(θ, ϕ)

)
eıωt

=
(
F ′′ +

2F ′

r
− l(l + 1)

r2
F

)
Ylm(θ, ϕ)eıωt,

where ∆Ω is the angular part of the Laplacian. The
integral I2 can easily be calculated:

I2 =
(
F ′′ +

2F ′

r
− l(l + 1)

r2
F

)2

≈
(
F ′′ − l(l + 1)

R2
F

)2

,

where this last equality is valid in the plane-parallel
layer approximation. As expected, expression (25)
does not depend on the azimuthal number m (due
to the spherical symmetry of the unperturbed star).
It can be shown that it is nonnegative for all allowed
values l = 0, 1, 2, . . ..
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