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ABSTRACT

Instability features of steady states of the plasma diode with electron and positron counter flows are studied. There are several types of such
states for each value of the inter-electrode distance. The case when charged particles moving in the diode plasma are not reflected from poten-
tial extrema is considered. We have solved an equation for the amplitude of the electric field perturbation for steady states with an inhomoge-
neous field distribution. Studying the dispersion equation has shown that all considered solutions are unstable. We have also confirmed this
result when simulating small perturbation evolution of a steady-state solution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0168756

I. INTRODUCTION

Plasma consisting of electrons and positrons is found in many
high-energy astrophysical objects, such as neutron stars and their envi-
ronment, black holes and active galactic nuclei, relativistic jets that pro-
duce bursts of gamma rays, etc. In an attempt to better understand
their properties, a large number of theoretical works and a number of
laboratory experiments have been carried out, see, for example, the
review of Ref. 1. An example of the most complex astrophysical objects
containing electron-positron plasma are pulsars. They were discovered
more than 50 years ago, but there is still no clear idea of either the
mechanism of their radiation or the reason for the jump between
modes; see, for example, Ref. 2. The pulsar radio emission generation
is usually assumed to be related to growing instabilities in the
electron–positron plasma at some altitude above the pulsar diode,
where the longitudinal electric field is completely screened by plasma,
see, for example, Refs. 3–5. In recent years, it was supposed that the
origin of pulsar radio radiation may be related to collective processes
in electron–positron plasma inside the pulsar diode itself, see, for
example, Refs. 6 and 7. In particular, the model that pulsar radio radia-
tion is produced directly inside the pulsar diode has been considered
in Refs. 8 and 9. In this regard, the study of the operating modes of
plasma diodes is of great interest.

The stationary states of a plasma diode with counter flows of elec-
trons and positrons were studied in Ref. 10, and studying features of

their stability was started in Ref. 11. Instability of steady states is char-
acteristic of the diodes with collisionless plasma. The mechanism of
instability development is the same as that of the known Pierce insta-
bility where a beam of electrons moves in the space of a diode against
a background of stationary ions.12 It should be noted that collective
effects in electron–positron plasma, created by a laser beam were con-
sidered, for example, in Ref. 13, and instabilities in such a plasma were
studied in Refs. 14–16.

The steady states of a vacuum diode with counter flows of elec-
trons and positrons coming from opposite boundaries can be divided
into two main types depending on the nature of the motion of charged
particles: (1) all particles reach the opposite electrode, and (2) part of
the particles is reflected from the potential barrier inside the diode and
returns to the electrode they are emitted from.10 In Ref. 11, an equation
for electric field perturbation for stationary solutions of the first type is
derived. In addition, in Ref. 11, an analytical solution of this equation
is found for a homogeneous field distribution, a dispersion equation is
obtained, and dispersion branches are constructed. It is proved that
homogeneous solutions are stable for the values of the inter-electrode
gap less than

ffiffiffi
2

p
p kD, where kD is the Debye–H€uckel length.

In the present paper, the stability features of inhomogeneous sta-
tionary solutions of the first kind are studied. The solution of equation
for amplitude of electric field perturbation is found by using a semian-
alytical approach. The dispersion equation is derived, and its solutions
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are studied. It is shown that all considered inhomogeneous stationary
states are unstable with respect to small perturbations. In addition to
that the evolution of small perturbations of electric field distribution in
the initial state is studied numerically using two codes: EK-code and
PIC-code. The results of numerical calculations of initial stage of per-
turbation evolution are compared with analytical ones.

II. STATIONARY SOLUTIONS AND FIELD
PERTURBATION EQUATION

Following Ref. 11, we assume that monoenergetic electron beam
comes from the left electrode with number density ne;0 and nonrelativ-
istic velocity ve;0, and monoenergetic positron beam comes from the
right electrode with number density np;0 ¼ ne;0 and velocity
vp;0 ¼ �ve;0, respectively. Hence, energy of emitted particles equals to
W0 � mev2e;0=2 ¼ mpv2p;0=2, where me and mp are electron and posi-
tron masses, respectively. The particles move without collisions in the
inter-electrode gap. In addition, we assume that when reaching any
electrode, particles are absorbed. The electric potential applied between
electrodes U is assumed to be equal to zero.

Let us pass to dimensionless quantities, choosing the particle
energy W0 and Debye–H€uckel length kD ¼ ½ð2~e0W0Þ=ðe2ne;0Þ�1=2 as
energy and length units, respectively (here, e is positron charge, and ~e0
is dielectric permittivity of vacuum). Dimensionless coordinate, electric
potential, and electric field strength are defined as f ¼ z=kD; g ¼ eU=
ð2W0Þ and e ¼ eEkD=ð2W0Þ, respectively.

Stationary solutions are completely determined by three dimen-
sionless parameters: inter-electrode distance d ¼ d=kD, potential
applied between the electrodes V ¼ eU=ð2W0Þ, and the electric field
strength e0 at the left electrode. It is convenient to represent these solu-
tions by points of (e0; d) plane for a fixed V value. These points form
separate curves, i.e., the solution branches.10 Such branches are shown
in Fig. 1 at V¼ 0.

In the case when V¼ 0 and particles enter the diode from oppo-
site electrodes with the same masses, kinetic energies, and charges (of
opposite signs), the total electric charge in the inter-electrode space

should be equal to zero, and potential distributions (PD) should be
odd-symmetrical with respect to inter-electrode gap center.11 Taking
into account this symmetry allows us to reduce the number of solution
branches in comparison with the general case V 6¼ 0.10 This property
will also allow us to correct numerical calculation when studying time-
dependent processes within the diode.

Stationary solutions are characterized by wavy form PDs. In Fig. 1,
the branches corresponding to the regime without particle reflection
from potential barriers are marked as nk with index k being the number
of PD extremes. In the case of particle reflection, we term minimum of
PD as virtual electron emitter (e-VE) and maximum of PD as virtual
positron emitter (p-VE). If particle reflection occurs, there are two kinds
of PD. When e-VE is located to the left of p-VE, the relevant branches
are marked as dk (here, index k is the number of extremes of PD
between e-VE and p-VE) in Fig. 1. When, by contrast, e-VE is located to
the right of p-VE, the relevant branches are marked as di;j (here, index i
is the number of the PD minima to the left of p-VE, and index j is the
number of the PD maxima to the right of e-VE) in Fig. 1. In the case of
V¼ 0, only solutions corresponding to branches nk and dk with even
index k values (k ¼ 0; 2; 4; …) and those corresponding branches ds;s
with s ¼ 0; 1; … can exist due to symmetry.

In the present paper, we study the stability features of inhomoge-
neous stationary solutions without particle reflection, i.e., solutions
corresponding to nk branches at k ¼ 2; 4; … (see Fig. 2). Following
Ref. 11, we consider the evolution of small PD perturbation. To do
this, we write PD in the form

gðf; sÞ ¼ g0ðfÞ þ ~gðfÞ exp ð�iXsÞ; j~gðfÞj � jg0ðfÞj: (1)

Here, g0ðfÞ is the unperturbed PD, ~gðfÞ is the amplitude of PD pertur-
bation, s is the dimensionless time, and X ¼ xþ iC is the complex
frequency.

The equation for amplitude of PD perturbation ~gðfÞ is obtained
by linearization of the Poisson’s equation in which densities of
charged particles moving in time-dependent electric field and the
PD (1) are substituted. In the case of regime without reflection of
charged particles from potential extremes, this equation is derived in
Ref. 11,

FIG. 1. Branches of stationary solutions in the case of monoenergetic charged parti-
cle beams at V¼ 0.

FIG. 2. Typical PD inherent in n2 branch (solid curve) and n4 one (solid þ dashed
curve) at V¼ 0.
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~g0ðfÞ þ
ðf

0
dx ue;0ðxÞ

� ��3
ðx

0
dy ~g0ðyÞ exp iX reðfÞ� reðyÞ½ �

� �

þ
ðd

f
dx up;0ðxÞ

� ��3
ðd

x
dy ~g0ðyÞ exp iX rpðfÞ� rpðyÞ

� �� �

¼ ~g0ðdÞ þ
ðd

0
dx ue;0ðxÞ

� ��3
ðx

0
dy ~g0ðyÞ exp iX reðdÞ� reðyÞ½ �

� �
:

(2)

Here, ue;0; up;0, re, and rp are electron and positron velocities at point
f and times of flight from this point to corresponding electrode in
unperturbed potential, respectively. These values are defined as

ue;0ðfÞ ¼ 1þ 2g0ðfÞ½ �1=2; up;0ðfÞ ¼ 1� 2g0ðfÞ½ �1=2;

reðfÞ ¼
ðf

0
dx ue;0ðxÞ

� ��1
; rpðfÞ ¼

ðd

f
dx up;0ðxÞ

� ��1
:

(3)

By solving Eq. (2) with initial condition ~gð0;XÞ ¼ 0, it is possible
to find the expression for potential perturbation ~gðfÞ. Boundary con-
dition at the right electrode,

~gðd;XÞ ¼ 0; (4)

gives us dispersion equation, whose solutions determine the relation of
eigenfrequency X with dimensionless inter-electrode length d (i.e.,
so-called dispersion branches). In the case when the growth rate
C ¼ ImX is positive, the stationary solution is unstable.

III. SOLUTIONS OF DISPERSION EQUATION

First of all, we solve equation for amplitude of electric field per-
turbation (2). After changing the order of integration in double inte-
grals and introducing a new function uðfÞ ¼ ~g0ðfÞ, this equation may
be rewritten as

uðfÞ þ
ðf

0
dy exp iX reðfÞ� reðyÞ½ �

� �
uðyÞ

ðf

y
dx ue;0ðxÞ

� ��3

þ
ðd

f
dy exp iX rpðfÞ� rpðyÞ

� �� �
uðyÞ

ðy

f
dx up;0ðxÞ

� ��3

¼ uðdÞ þ
ðd

0
dy exp iX reðdÞ� reðyÞ½ �

� �
uðyÞ

ðd

y
dx ue;0ðxÞ

� ��3
:

(5)

Thus, our problem is reduced to solving the Fredholm integral equa-
tion of the second kind with respect to function uðfÞ. Since the solu-
tion of Eq. (5) is defined up to multiplicative constant uðdÞ, we
assume that uðdÞ ¼ 1. Next, we introduce the notations

Kðf; y;XÞ ¼ Pðf; yÞQðf; y;XÞ;

Pðf; yÞ ¼

ðf

y
dx ue;0ðxÞ

� ��3
; y � f;

ðy

f
dx up;0ðxÞ

� ��3
; y � f;

8
>>>><
>>>>:

Qðf; y;XÞ ¼
exp iX reðfÞ� reðyÞ½ �

� �
; y � f;

exp iX rpðfÞ� rpðyÞ
� �� �

; y � f:

(

(6)

Then Eq. (5) may be rewritten as

uðf;XÞ þ
ðd

0
dy Kðf; y;XÞuðy;XÞ�

ðd

0
dy Kðd; y;XÞuðy;XÞ ¼ 1:

(7)

If the solution of Eq. (7) is found, then it is enough to integrate the
function uðf;XÞ to obtain the amplitude of potential perturbation,

~gðf;XÞ ¼
ðf

0
dyuðy;XÞ þ ~gð0;XÞ:

At the right boundary, we have

~gðd;XÞ ¼
ðd

0
dyuðy;XÞ þ ~gð0;XÞ: (8)

Since the potential values on the electrodes are fixed, the equalities
~gð0;XÞ ¼ 0; ~gðd;XÞ ¼ 0 take place, and Eq. (8) gives us the disper-
sion equation

ðd

0
dyuðy;XÞ ¼ 0: (9)

Analysis of solution of Eq. (9) allows us to determine the stability fea-
tures of stationary solutions with inhomogeneous PD. Hence, in order
to get dispersion equation, it is necessary to find the function uðf;XÞ
by solving Eq. (7).

Since it is impossible to find an analytical solution to this equa-
tion, we use an approximate numerical method. To this end, we divide
the interval ½0; d� into subintervals of length h by points fi,
i ¼ 0; 1; …N , where 0 ¼ f0 < f1 < � � � < fN ¼ d and replace the
integrals in Eq. (6) with sums by the trapezoid method. This procedure
leads to a system of linear equations with respect to the quantities,
uiðXÞ ¼ uðfi;XÞ; i ¼ 0; 1; …;N � 1,

ui þ h
XN�1

j¼1

Kðfi; fj;XÞ� Kðd; fj;XÞ
� �

uj

þ h
2

Kðfi; 0;XÞ� Kðd; 0;XÞ½ �u0

�

þKðfi; d;XÞ� Kðd; d;XÞg ¼ 1: (10)

Here, we take into account that uN ¼ 1.
Assume that the solution of Eq. (10) is found. Then, substituting

it into the dispersion Eq. (9) gives

h
XN�1

j¼1

ujðd;XÞ þ
h
2
u0ðd;XÞ þ 1½ � ¼ 0: (11)

This equation allows us to obtain eigenfrequencies as well as both ape-
riodic and oscillation dispersion branches.

Aperiodic dispersion branches, corresponding to n2 and n4
branches, are shown in Fig. 3. The n0 branch calculated by the method
described above is also shown in Fig. 3. It fully coincides with the
branch n0 obtained in Ref. 11 on the base of analytical solution of Eq.
(7). Figure 3 shows that the stationary solutions corresponding to n2
branch are aperiodically unstable (the growth rate C > 0). It is also
shown that all oscillating modes corresponding to n2 branch have neg-
ative growth rate.

As for solutions belonging to n4 branch, we see that relevant station-
ary states are aperiodically stable within interval 6:766 < d < 7:752.
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However, the consideration of oscillating branches in this interval shows
that one of them has positive growth rate; hence, these stationary states
are also unstable with respect to small oscillating perturbations (see
Fig. 4). Thus, all the solutions corresponding to n2 and n4 branches are
unstable.

Calculations of dispersion curves show that dependencies CðdÞ
for the PDs belonging to the same nk branch with different signs of
field at the left boundary, e0, coincide in the case of V¼ 0. It is true for
both aperiodic and oscillating branches. This can be proved in the gen-
eral case.

Thus, our investigations show that inhomogeneous stationary
solutions corresponding to n2 and n4 branches are unstable, i.e., such
stationary solutions cannot exist. It is possible to suppose that station-
ary solutions, corresponding to n2s branches with s � 3, are also unsta-
ble with respect to small perturbations. It should be pointed out that
the instability has the same mechanism as well-known Pierce instabil-
ity, when electron beam moves through background of immobile ions
in the diode space.11 In Sec. IV, we show what solutions may appear
instead of the unstable stationary solutions.

Note that while finding the eigenfrequencies for given d by solving
(11), we also get a set of eigenmodes [i.e., solutions of the system (10)]
relevant to these frequencies. Thus, expanding an arbitrary potential per-
turbation in terms of eigenmodes, we can predict the potential distribu-
tion evolution at the initial stage where our consideration is relevant.
Evidently, if there is the eigenfrequency whose positive real part is signif-
icantly larger than those of other eigenfrequencies, then, after a short
time, the corresponding mode will be the main term that determines the
shape of the potential distribution deviation from the stationary one.
This shape remains unchanged over time, and the deviation of potential
distribution in the diode from the steady-state one will exponentially
grow, exponent being the real part of eigenfrequency. This is exactly
what we have obtained as a result of independent numerical simulation
of small perturbation evolution described in Sec. IV.

IV. NUMERICAL STUDY OF INSTABILITY
DEVELOPMENT

When studying steady-state solution stability features in the diode
numerically, we calculate the evolution of small perturbation of an
electric field stationary distribution. The eigenmode growth rate C and
frequency x are evaluated from time dependence of any characteristic
of this process (e.g., electric field strength at the left electrode). If the
solution turns out to be unstable, the perturbation evolution leads to
solution deviation from the stationary one (C > 0). In the opposite
case (C < 0), the solution returns to the stationary one.

In contrast to Sec. III, where solution stability features were stud-
ied analytically, the electron and positron flows should not be monoe-
nergetic in numerical modeling. We choose their velocity distribution
functions (VDFs) on electrodes in the form of “gates” of small width
D � 1,

f ðeÞ0 ðuÞ ¼ ð2DÞ�1; u 2 1� D; 1þ D½ �;
0; u 2 0; 1� Dð Þ [ 1þ D;1ð Þ;

(
(12)

f ðpÞ0 ðuÞ ¼ ð2DÞ�1; u 2 �1� D;�1þ D½ �;
0; u 2 �1;�1� Dð Þ [ �1þ D; 0ð Þ:

(
(13)

When using the charged particle VDFs in the form (12) and (13), sta-
tionary solutions should slightly differ from those used in the linear
theory with d-shaped VDFs. We have computed new stationary distri-
butions of the electric field.

FIG. 3. Aperiodic dispersion branches, corresponding to n0, n2, and n4 branches.

FIG. 4. Oscillating dispersion branches for solutions corresponding to n4 branch. Growth rates C and eigenfrequencies x are shown on panels (a) and (b), respectively.
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In this paper, we study the mode without reflection of particles
from potential barriers, namely, the stability features of solutions
belonging to the branches n2i. For these solutions, the particle density
are determined by the following formulas:

ne;pðgÞ ¼
1
2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ DÞ262 g

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� DÞ262 g

q� �
: (14)

Here, signs “þ” and “�” relate to electrons and positrons, respectively.
Substituting the particle densities (14) into the Poisson’s equation,

multiplying both sides by g0 and integrating the result over the poten-
tial from g1 to g, we obtain

g0 ¼ 6 ðg01Þ2 þ
1
3D

D0ðgÞ� D0ðg1Þ½ �
	 
1=2

: (15)

Here,

D0ðgÞ ¼ ð1þ DÞ2 þ 2 g
� �3=2 � ð1� DÞ2 þ 2 g

� �3=2

þ ð1þ DÞ2 � 2 g
� �3=2 � ð1� DÞ2 � 2 g

� �3=2
: (16)

Next, we integrate Eq. (15) and calculate the potential and electric field
distributions. We use the electric field strength at the left boundary as
a parameter.

Relationship between e0 and the potential minimum gm is
derived from Eq. (15) if we substitute g¼ 0 and g1 ¼ gm in it,

e0 ¼ 4þ 4
3
D2 � 1

3D
ð1þ DÞ2 þ 2 gm
� �3=2n�

� ð1� DÞ2 þ 2 gm
� �3=2þ ð1þ DÞ2 � 2 gm

� �3=2

� ð1� DÞ2 � 2 gm
� �3=2o�1=2

: (17)

The limiting value of e0 for the n2 branch is reached at
gm ¼ �ð1� DÞ2=2 (for lesser gm, particle reflection begins),

e0 ¼ 4� 4
3

ffiffiffi
2

p
þ 2

ffiffiffiffi
D

p
�

ffiffiffi
2

p
D� D2 þ

ffiffiffi
2

p
ð1þ D2Þ

1� Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p
" # !1=2

:

For D ! 0, this formula yields an equation corresponding to the case
of monoenergetic beams: e0 ¼ ½2ð2�

ffiffiffi
2

p
Þ�1=2 	 1:0824, here

gm ¼ �1=2.
The minimum point position fm is found by integrating Eq. (15)

from gm to zero,

fm ¼
ffiffiffiffiffiffiffi
3D

p ð0

gm

dx

D0ðxÞ� D0ðgmÞ½ �1=2
: (18)

It can be seen from Eq. (14) that the PD is symmetric with respect to
the point f ¼ fm. Hence, the gap middle is at f ¼ 2 fm point and the
gap value for n2 branch is

d ¼ 4 fmðe0Þ: (19)

Here, fm is defined by Eq. (18), with gm being expressed in terms of e0
from Eq. (17).

The upper part of the n2 branch is constructed according to Eqs.
(17)–(19) by varying gm from 0 to �ð1� DÞ2=2, and the lower part is

obtained by merely mirror reflection of the upper part about the e0
¼ 0 axis.

The PD in the diode for the solutions corresponding to the n2
branch on the segment ð0; fmÞ for a given value of d is found by inte-
grating Eq. (15) with the boundary condition gð0Þ ¼ 0. In this case, the
minimum coordinate fm, the minimum potential gm, and e0 are deter-
mined from the relations (17)–(19). On the segment ðfm; d=2Þ, the PD
is constructed by mirror reflection about the f ¼ fm line, and on the
segment ðd=2; dÞ, it is found from the condition of solution antisymme-
try with respect to the d=2 point. Branches with large index values are
easy to get from these solutions by adding the integer number of waves.

For modeling the evolution of electric field and charged particle
VDFs, we used two different numerical codes: PIC-code and EK-code.
When modeling VDFs in PIC-code, individual particles moving in an
electric field specified at the grid nodes are considered. In total, the
grid contains Nf equally spaced nodes with distance hf ¼ d=ðNf � 1Þ
between them. The cloud-in-cell model is used to find charge density
at the grid nodes (linear contribution of a particle to density in neigh-
boring nodes),19 and density of a unit value corresponds to N0 particles
in a cell. To calculate the electric field at the grid nodes, the Poisson’s
equation is solved, and linear approximation is used for the field
between nodes.19 To find the position of the particles at the next time
moment, the “leapfrog method” is used.19 Time step hs is chosen to be
constant. At the end of every step, the particles that hit the electrodes
are discarded, and particles coming from the electrodes are added.
In this case, the added electrons and positrons are taken with
arbitrary velocities uniformly distributed in the ½1� D; 1þ D� and
½�1� D;�1þ D� intervals [Eqs. (12) and (13)], and time moments of
their leaving the electrode are distributed uniformly over the hs interval.

As the initial field distribution at time moment s ¼ s0, a station-
ary distribution evaluated according to the algorithm described above
is set with a perturbation ~gðf; s0Þ ¼ C sin ð2p f=dÞ (C � 1) imposed
on it. Sometimes, we set C¼ 0; in this case, perturbation is due to
numerical error. Initial particle VDFs in perturbed stationary field
f ðaÞjt¼0; a ¼ e; p are defined by the relations

f ðaÞðf;uÞjt¼0 ¼
1
2D

if u2 uðaÞminðfÞ ; uðaÞmaxðfÞ
h i

;

f ðaÞðf;uÞjt¼0 ¼ 0 if u2 ð�1 ; uðaÞminðfÞ� [
h
uðaÞmaxðfÞ ;þ1Þ:

(20)

Here, a ¼ e; p, and

uðaÞminðfÞ ¼ �s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�s� Dð Þ2 þ 2 s g0ðfÞ þ ~gðf; s0Þð Þ

q
; (21)

uðaÞmaxðfÞ ¼ �s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sþ Dð Þ2 þ 2 s g0ðfÞ þ ~gðf; s0Þð Þ

q
(22)

and s¼ – 1 for electrons, and s¼ 1 for positrons. It is seen from Eq
(20) that the VDFs for electrons and positrons at t¼ 0 have a form of
“gates” for each point f of inter-electrode gape, ie., VDFs are
constant over a certain range of velocities and vanish outside of it. To
start the calculation in PIC code some amount of Na

i of particle
(electrons and positrons) is added in each cell. Denote the boundaries

of the cell i by fi ¼ hf ði� 1Þ; fiþ1 ¼ hfi. The amount NðaÞ
i is

NðaÞ
i ¼ hfðuðaÞmaxðfiþ1=2Þ� uðaÞminðfiþ1=2ÞÞ=ð2DÞ: (23)

Here i is the number of the cell, fiþ1=2 ¼ fi þ hf=2. The coordintes
and velocities of the particles are uniformly distributed over interval
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½fi; fiþ1� and over the velocity range ½uðaÞminðfiþ1=2Þ ; uðaÞmaxðfiþ1=2Þ�.
Furthermore, the charge densities are evaluated, the Poisson’s equation
is solved, and new positions of particles are calculated, whereupon the
process is repeated.

The algorithm of EK-code modified for the case when negative
and positive charged particles enter from different electrodes with VDFs
(12) and (13) is described thoroughly in Refs. 17 and 18. It is based on
sequential calculation of the charged particle VDFs, densities, and elec-
tric field distribution at each time step. When evaluating the particle
VDFs in each node of the spatiotemporal grid, a certain set of particle
trajectories is computed. In the course of calculation, a trajectory of each
particle is traced back in time in an electric field, whose distribution is
known at all previous time moments up to the moment when the parti-
cle left the electrode. The field distribution at each time moment is the
Poisson’s equation solution, whose right side contains the electron and
positron densities calculated from the VDFs at the moment. To ensure
self-consistency of calculations, we perform iterations at each time step.

When computing small perturbation development using the EK-
code, the electric field distribution is considered to be equal to the sta-
tionary one during the time interval ð0; s0Þ. In the simulations
described as follows, we chose s0 ¼ 18. Since the time moment follow-
ing the s ¼ s0 one, we started to evaluate the electric field distribution
along with particle distribution in accordance with the algorithm
described earlier.

The calculations were carried out for the inter-electrode gap val-
ues d¼ 3 and d¼ 4 for stationary solutions with both positive and
negative e0 values. Due to numerical errors in the given initial distribu-
tion of the stationary field, the iteration process at the first step of self-
consistent computation led to a small surge in field distribution at the
moment s ¼ s0, and we considered the following calculations as a
modeling of the perturbed stationary solution evolution. Figure 5
shows the time dependences for the maximum difference ~gðf; sÞ
¼ gðf; sÞ� g0ðfÞ for e0ðs0Þ > 0 and e0ðs0Þ < 0 for d¼ 4 at the initial
stage of evolution, where linear theory is applicable. After a brief tran-
sient process, the maximum ~gMðsÞ value increases exponentially with
growth rate C ¼ 0:32 in both cases. This agrees well with the growth
rate provided by a semi-analytical method for monoenergetic beams

(C ¼ 0:31). Similar calculations for d¼ 3 give C ¼ 0:68, which coin-
cides with the value obtained using the semi-analytical method.

Moreover, we compared a form of computed perturbation with
that predicted by linear theory. In the region of exponential growth,
one can select an area where the perturbation form mostly does not
change and coincides with that of the fastest aperiodic growing mode
(the main eigenmode). Figure 6 shows ~gðf; sÞ dependences computed
via EK-code for positive and via PIC-code for negative e0ðs0Þ values
normalized to the maximum of the main eigenmode, in the time inter-
val where the linear theory is relevant. When evaluated by EK-code,
this is the range of values s� s0, approximately 3–7 for d¼ 3 and
4–20 for d¼ 4, and when calculated by PIC-code, it is 5–7 for d¼ 3
and 11–19 for d¼ 4. One can see that the perturbation form obtained
numerically changes little and fits with that calculated analytically. The
area of applicability of the linear theory begins with the termination of
the transient process (minor modes decay) and ends with the pertur-
bation amplitude increase for values of the order of several
hundredths.

Our simulations revealed four possible evolution scenarios, which
were of the same nature for d¼ 3 and d¼ 4. The first and the second

FIG. 5. Dependences ~gMðsÞ for e0 > 0 (solid lines) and e0 < 0 (dashed lines),
computed by EK-code (1) and PIC-code (2); d¼ 4.

FIG. 6. Comparison of dependences ~gðf; sÞ obtained as a result of numerical sim-
ulations with main eigenmodes found by semi-analytical method for a set of time
moments: (a) e0ðs0Þ < 0, calculation via EK-code and (b) e0ðs0Þ > 0, calculation
via PIC-code; d¼ 3.
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ones correspond to the potential maximum gMðsÞ growth during lin-
ear stage of the evolution process with e0ðs0Þ > 0 and e0ðs0Þ < 0,
respectively. The third and the fourth ones correspond to gMðsÞ
decreasing during linear stage with e0ðs0Þ > 0 and e0ðs0Þ < 0,
respectively.

In the first and second cases after leaving the area of linear theory
applicability, the distribution maximum proceeds to increase and
eventually reaches the values at which charged particle reflection
begins. In the first case after entering the mode with reflection, e0ðsÞ
and gMðsÞ fluctuate around the values corresponding to the d0 branch.
Gradually, the oscillations take on a regular nature, and eventually
become periodic. In the second case after passing a certain maximum
value gMðsÞ begins to decrease and approaches zero, while the PD
takes the form of a curve with two minima and two maxima. The value
gMðsÞ ¼ 0 is not reached, since the maxima (one of which is placed
on the left of the middle of diode, and another, on the right) at some
moment become equal and change places. Afterward gMðsÞ performs
fluctuations, during which e0 changes sign, and PD takes a form of a
curve with four extrema near zero. Despite the complex nature of these
processes, it can be argued that they are practically independent of ini-
tial perturbation. This is confirmed by the fact that the same process
repeats in the third case, when e0ðs0Þ > 0 and the potential maximum
value does not increase, yet decreases during the linear stage of the
process. In this case, after leaving the area of linear theory applicability,
gMðsÞ proceeds to decrease. As well e0ðsÞ decreases, and, at some time
moment, it vanishes and afterward changes sign. The PD in the vicin-
ity of zero values of e0ðsÞ has four extrema. Then, gMðsÞ increases (PD
maximum being in the right part of the diode) and enters the mode
with particle reflection. In the course of further PD evolution, the
dependence gMðsÞ within the calculation margin of error reproduces
the obtained one in the second case. For d¼ 3, we followed an evolu-
tion of the PD prior to reaching homogeneous solution in the second
and the third cases.

Finally, in the fourth case, exponentially damped oscillations of
the PD occur in the diode (PD also takes the form of a curve with four
extrema of very small values). The solution approaches the homoge-
neous one with the growth rate predicted by linear theory.11

Dependences gMðsÞ, obtained using both EK-code and PIC-code,
match completely for all described cases. Figure 7 shows dependences
gMðsÞ for d¼ 3 for all four cases.

V. CONCLUSION

Stability features of the steady-state solutions for a diode with
counterstreaming electron and positron flows in the mode without
charged particle reflection from potential extrema have been studied.
Such solutions belong to the n2s branches with s ¼ 0; 1; 2;… in
e0; d-plane (Fig. 1). Homogeneous solutions (n0 branch) are stable
when the inter-electrode gap is less than

ffiffiffi
2

p
p kD.

11 On the other
hand, all solutions lying on the n2 and n4 branches are unstable with
respect to small perturbations. Thus, we have completed the study of
all steady-state solutions without charged particles reflection from
potential extrema.

In the course of the research, an equation for electric field pertur-
bation amplitude has been derived. A method for determining stability
features of the solutions corresponding to nk branches with arbitrary
value of k has been proposed. Dispersion equations have been
obtained, and their solutions were studied. In addition, we have stud-
ied stability features of the same steady-state solutions using two

FIG. 7. Dependences gMðsÞ computed via EK-code (solid lines) and via PIC-code
(dashed lines) for d¼ 3. The graphs differ from each other by e0ðs0Þ sign and the
gM behavior at the early stage of evolution: (a) for e0ðs0Þ > 0, gM increases; (b) for
e0ðs0Þ < 0, gM increases (1, bottom axis), and for e0ðs0Þ > 0, gM decreases (2,
top axis); and (c) for e0ðs0Þ > 0, gM decreases. The PIC-code curves are shifted
along the s-axis to coincide with EK-code ones. In figure (a), the dotted line shows
the gM magnitude that corresponds to the d0 branch.
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numerical methods: E,K-code and PIC-code. In this case, a small per-
turbation is added to the steady-state electric field distribution, and its
evolution is traced. From the time characteristics of this process, we
have found eigenmodes. The results obtained by both codes coincided
with one another and also with those obtained analytically.

To complete studying stability features of the steady-state solu-
tions, it is necessary to study those for more complex regime where the
charged particles are reflected from the potential barriers (d branches
in Fig. 1). An equation for electric field distribution perturbation has
not been obtained for this mode hitherto. Therefore, today, the only
possibility is to explore the stability features of the solutions, that is,
calculation of a small field perturbation evolution using numerical
codes. In our next paper, we plan to study the stability features of the
steady-state solutions by simulations using the above-mentioned
codes.
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