Breakdown field  ≈3·10^{5}V/cm 
Mobility electrons  ≤1400 cm^{2} V^{1}s^{1} 
Mobility holes  ≤450 cm^{2} V^{1}s^{1} 
Diffusion coefficient electrons  ≤36 cm^{2}/s 
Diffusion coefficient holes  ≤12 cm^{2}/s 
Electron thermal velocity  2.3·10^{5}m/s 
Hole thermal velocity  1.65·10^{5}m/s 
Electron mobility versus temperature for different doping levels. 1. High purity Si (N_{d}< 10^{12} cm^{3}); timeofflight technique (Canali et al. [1973]) 2. High purity Si (N_{d}< 4·10^{13} cm^{3}): photoHall effect (Norton et al. [1973]) 3. N_{d}= 1.75·10^{16} cm^{3}; N_{a} = 1.48·10^{15} cm^{3}; Hall effect (Morin and Maita [1954]). 4. N_{d}= 1.3·10^{17} cm^{3}; N_{a} = 2.2·10^{15} cm^{3}; Hall effect (Morin and Maita [1954]). 

Electron drift mobility versus donor density at different temperatures (Li and Thumber [1977]). 

Electron drift mobility versus donor density, T=300 K. (Jacoboni et al. [1977]). 

The electron Hall factor versus donor density. 77 and 300 K. Solid lines show the results of calculations. Symbols represent experimental data (Kirnas et al. [1974]). 

Resistivity versus impurity concentration for Si at 300 K.  
Temperature dependences of hole mobility for different doping levels. 1. High purity Si (N_{a} = 10^{12} cm^{3}); timeofflight technique (Ottaviany et al. [1975]); 2. High purity Si (N_{a}~10^{14} cm^{3}); Halleffect (Logan and Peters [1960]) 3. N_{a}=2.4·10^{16} cm^{3}; N_{d}=2.3·10^{15} cm^{3}; Halleffect (Morin and Maita [1954]) 4. N_{a}=2·10^{17} cm^{3}; N_{d}=4.9·10^{15} cm^{3}; Halleffect (Morin and Maita [1954]) 

Hole drift mobility versus acceptor density at different temperatures (Dorkel and Leturcq [1981]). 

Hole drift mobility versus acceptor density. 300 K. (Jacoboni et al. [1977]). 

The hole Hall factor versus acceptor density. 300 K. (Lin et al. [1981]). 
Si. Electron drift velocity vs. electric field. Solid lines: F(111). Dashed lines: F(100). Jacoboni et al. (1977). 

Si. Electron drift velocity vs. electric field at different temperatures. F(111). Jacoboni et al. (1977). 

Temperature dependence of the saturation electron drift velocity (Jacoboni et al. [1977]). Solid line is calculated according to equation: v_{s}=v_{so}·[1+C·exp(T/Ι)]^{1}, where v_{so}=2.4·10^{7 }cm s^{1}, C=0.8, Ι=600K. 

Mean energy of electrons as a function of electronic field F at different
donor densities. F(111). 300 K. 1. N_{d} = 0; 2. N_{d} = 4·10^{18} cm^{3}; 3. N_{d} = 4·10^{19} cm^{3}. (Jacoboni et al. [1977]). 

The field dependence of longitudinal electron diffusion coefficient
D for 77K and 300 K. F  (111). Dotted and solid lines show the results of MonteCarlo simulation. Symbols represent measured data. (Canali et al. [1985]). 

Field dependences of the hole drift velocity at different temperatures. F  (100). (Jacoboni et al. [1977]). 

Mean energy of holes as a function of electronic field F. N_{a} = 0, T=300 K. (Jacoboni et al. [1977]). 

The field dependence of longitudinal hole diffusion coefficient D
for 77K and 300 K. F(111). Dotted and solid lines show the results of MonteCarlo simulation. Symbols represent measured data. (Canali et al. [1985]). 
Electron ionization rate α_{i} vs. 1/F. T = 300 K. (Maes et al. [1990]). 

Hole ionization rate β_{i} vs. 1/F. T = 300 K. (Grant [1973]). 

Breakdown voltage and breakdown field vs. doping density for an abrupt
pn junction. T = 300 K. (Sze [1981]). 

Normalized breakdown voltage vs. temperature for an abrupt pn
junction at different doping levels. (Crowell and Sze [1981]). 
Lifetime τ_{p} and diffusion length L_{p} of holes
in ntype Si vs. donor density. T = 300 K. For 10^{12} cm^{3} < N_{d} ≤ 10^{17} cm^{3} from numerous experimental data for good quality industrial produced nSi. For N_{d} ≥ 10^{17} cm^{3}  (Alamo and Swanson [1987]). L_{p} (N_{a}) dependence (dashed line) is calculated as L_{p}(N_{d})=[D_{p}(N)·τ_{p}(N)]^{1/2}, where D_{p}=(k_{B}·T/q)·μ_{p}. 

Lifetime τ_{n} and diffusion length L_{n} of electrons
in ptype Si vs. acceptor density. T = 300 K. For 10^{13} cm^{3} < N_{a}≤10^{16} cm^{3}  from numerous experimental data for good quality industrial produced pSi. For N_{a} ≥ 10^{16} cm^{3}  (Tyagi and Van Overstraeten [1983]). L_{n}(N_{a}) dependence (dashed line) is calculated as L_{n}(N_{a})=[D_{n}(N)·τ_{n}(N)]^{1/2}, where D_{n}=(k_{b}·T/q)·μ_{n}. 
Si  Remarks  Referens  
The longest lifetime of holes t_{p}  
Diffusion length L_{p} = (D_{p } x t_{p})^{1/2}  
Surface Recombinaton Velocity  
Radiative recombination coefficient B  1.1 x 10^{14} cm^{3}/s  Gerlach et al. (1972)  
Auger coefficient C_{n}  1.1 x 10^{30} cm^{6}/s  300 K  
Auger coefficient C_{p}  0.3 x 10^{30} cm^{6}/s  300 K  
Auger coefficient C = C_{n} + C_{p}  1.4 x 10^{30} cm^{6}/s  300 K 