AGILE GRB observations

OFISICA

VOIZA

ISTIT

Alessandro Ursi (INAF-IAPS, Rome) on behalf of the AGILE Team

25 YEARS OF KONUS-WIND EXPERIMENT, September 9–13, 2019, St. Petersburg, Russia

AntiCoincidence (AC) [50 keV – 200 keV] 4 (x3) +1 plastic scintillators

Super AGILE (SA) [18 keV – 60 keV] 4 Si detectors + W coded mask

Gamma-Ray Imaging Detector (GRID) [30 MeV = 50 GeV] 22 W-Si foils

> MiniCALorimeter (MCAL) [350 keV – 100 MeV] 30 CsI (TI) bars

gamma-ray sky

Terrestrial Gamma-ray Flashes (TGFs)

Cygnus region

Crab nebula

GW follow-up partner

spinning

imagers scan 80% sky / 7 min

Iow-inclination orbit 2.5° low background

• sub-ms trigger logic sensitive to fastest transients

high-energy range
 h.e. GRB component

.

CGRO (1991-2000)

COMPTON OBSERVATORY INSTRUMENTS

GRBs

E > 100 MeV

CGRO (1991-2000)

COMPTON OBSERVATORY INSTRUMENTS

simultaneous

GRBs E > 100 MeV

CGRO (1991-2000)

COMPTON OBSERVATORY INSTRUMENTS

simultaneous GRBs extended/delayed E > 100 MeV same model (1 MeV – 1 GeV) 1993/1/31 (Superbowl) Burst 800 - BATSE profile second 600 EGRET photons 400 10³ Counts EGRET deadtime ~ pulse width 200 ms 200 0 2 6 Time (seconds) GRB 930131 [Sommer et al., 1994]

spectral evolution?

"new" generation

Si detectors...

MCAL

GRID

AGILE GRB ON-BOARD SEARCH PROCEDURE

MCAL 1st GRB catalog [Galli et al., 2013]

84 GRBs

~ ¹/₄ short GRBs

GRB 080514B

- first GeV-bright GRB after EGRET
- afterglow with photometric redshift of 1.8

GRB 090510

GRB 131108A

20

-20 0

- 66 photons in first 80 s
- F (30 MeV 1 GeV) = 2.56.10⁻⁵ erg cm⁻²
- z = 2.4

MiniCALorimeter (MCAL) [350 keV – 100 MeV] 30 CsI (TI) bars

	HARDWARE LOGIC (static threshold)			SOFTWARE LOGIC (dynamic threshold)			
	293 µs	1 ms	16 ms	64 ms	256 ms	1 s	8 s
old	8 counts	10 counts	41 counts	7 σ	5 σ	5 σ	5 σ
new	7 counts	7 counts	8 counts	5 σ	4 σ	4 σ	4 σ

Telespazio S.p.A. (TPZ)

enhanced "MCAL-GW" configuration

focusing on each MCAL time bin

TGFs?

no geographic pattern
no TGF selection criteria
not enough "short" duration

electronic noise?
no "low-energy"
no clustering

GW 170104

GW 170104

adopted during LIGO/Virgo O2 run

GW170104	Tavani et al., GCN #20375
TR170120	Lucarelli et al., GCN #20489
TR170218	Verrecchia et al., GCN #20690
TR170225	Ursi et al., GCN #20741
TR170227	Ursi et al., GCN #20769
TR170314	Cardillo et al., GCN #20863
TR170503	Ursi et al., GCN #21062
GW170808	Verrecchia et al., GCN #21224
GW170809	Ursi et al., GCN #21434
GW170814	Longo et al., GCN #21477
GW170817	Pilia et al., GCN #21525
TR170819	Pittori et al., GCN #21605
GW170823	Cardillo et al., GCN #21660
TR170825	Cardillo et al., GCN #21700

... and O₃!

S190408an	Lucarelli et al., GCN #24063
S190421ar	Ursi et al., GCN #24140
S190426c	Cardillo et al., GCN #24245
S190503bf	Ursi et al., GCN #24379
S190510g	Ursi et al., GCN #24437
S190512at	Ursi et al., GCN #24507
S190513bm	Casentini et al., GCN #24526
S190519bj	Lucarelli et al., GCN #24603
S190517h	Ursi et al., GCN #24572
S190521g	Casentini et al., GCN #24623
S190521r	Casentini et al., GCN #24636
S190602aq	Casentini et al., GCN #24722
S190630ag	Pittori et al., GCN #24933
S190701h	Lucarelli et al., GCN #24953
S190706ai	Lucarelli et al., GCN #25001
S190707q	Longo et al., GCN #25018
S190720a	Casentini et al., GCN #25116
S190727h	Ursi et al., GCN #25167
S190728q	Longo et al., GCN #25193
S190814bv	Pilia et al., GCN #25327
S190828j	Longo et al., GCN #25498
S1908281	Longo et al., GCN #25510
S190901ap	Cardillo et al., GCN #25613

GRB 170114B

- Super AGILE localization
- important example for GW counterpart searches

GRB 170127C

GW 170104

Earth occultation at To

 $\mathsf{GRID}\ \mathsf{closest}\ \mathsf{available}\ \mathsf{upper}\ \mathsf{limits}$

GRB 180720B

MCAL triggered

extended/delayed emission

detected by HESS at TeV energies!

Trigger time:2018–07–20 14:21:44.000/459181302.000s (Δt=4.00s) Input sky position: 94.833,–63.074 (off–axis angle: 68.13)

GRID? no spoiler...

GRB 180914B

GRB 180914B

GRB 180914B

GRB 190114C

extended/delayed emission

detected by MAGIC at TeV energies!

but interesting MCAL...

[Ursi et al., in prep.]

at To just outside GRID FoV!

GRB 190501A

prompt emission

another GRID localization

upper limits

Conclusions

- investigations on the GRB high-energy component
 - simultaneous prompt emission, extended/delayed emission
 - unique spectral model, additive extra component
- sensitive to sub-ms timescales for fastest transients
- continuously observing large fraction (SA, GRID) or all accessible sky (MCAL, RMs)
- enhanced trigger capabilities
- prompt electromagnetic follow-up of GWs
- high-energy upper limits (MCAL and GRID)

Thank you!

ROFISICA

NOIZAL

IO II

ິ

25 YEARS OF KONUS-WIND EXPERIMENT, September 9–13, 2019, St. Petersburg, Russia

GRB 090401B

simultaneous emission

- main bumps simultaneous at MeV and GeV
- gamma-rays in $[t_0+6 s, t_0+125 s]$ (first transit)

no gamma-rays in $[t_0+410 \text{ s}, t_0+529 \text{ s}]$ (second transit)

no spectral cutoff until 3.5 GeV

GRB 090510

- in the FoV after 500 s
- first GRB automatically ٠ detected by GRID flaring source pipeline
- first detection by Likelihood ٠ of the extended emission

extended/delayed emission

0.2

0.25

0.3

0.1

0.15

GRB 180720B

GRB 180720B Lightcurve

- Multi-peaked and very bright prompt emission.
- Fermi-LAT detection up to 700 s after trigger. Photon index ~ -2.0.
- H.E.S.S. flux (100 to 440 GeV).
 Photon index consistent with -2.0.
- Gamma-ray energy flux at same level as X-Ray.
- Afterglow falling at same rate in wavelenghts.

H.E.S

MCAL GRB pipeline

•The Upper Limits are estimated with a Bayesian approach for a sample of 68 undetected GRBs from July 2007 until October 2009 with position inside the GRID FoV;

•40 GRBs have spectral information (from Konus-Wind, Suzaku/WAM and Fermi/GBM), that is used to convert counts into flux;

•In six cases the Upper Limit is stringent with respect to the extrapolation of the GRB spectrum at lower energy;

• The corresponding 3 sigma upper limit is ~0.03 ph cm⁻² s⁻¹ => ~10⁻⁷ erg cm⁻² s⁻¹;

• A likelihood search of gamma-ray delayed components (up to 3600 s after trigger) for the same events does not give positive results;

Conclusions

- Only a small subsample of GRBs emits in gamma rays: the overall detection (AGILE + Fermi) is ~10 events per year (consistent with the expectations of Band (2009);
 - GeV emitting are the brightest GRBs (> 10⁻⁵ erg/cm² at keV MeV) and have high minimum Lorentz factor (600 – 1000);
 - Both classes of long and short are detected in the gamma energy band.
 - · Some events have a single spectrum other have additional spectral compone
- Gamma-ray emitting GRBs seem to be characterised by high fluence and high Lor factor. It is still debated if gamma-rays are produced in internal (prompt) or exter (afterglow) shocks.

AGILE & GW:

AGILE good fast coverage of all sky

participated to LIGO-Virgo O2 run, improved sensitivity to weak MCAL events.